63713 (573442), страница 2

Файл №573442 63713 (Управление динамической системой) 2 страница63713 (573442) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Пренебрегая остаточными членами Og(ω,μ) и Oc(ω), получим систему вида:

Или

(4)

Решая систему численно, получаем табличные значения ∆ω(t) и ∆μ(t), по которым строим графики ∆ω(t) (рисунок 4) и ∆μ(t) (рисунок 5).

Рисунок 4 – График ∆ω(t)



Рисунок 5 – График ∆μ(t)

6 Замкнутая система

В векторно-матричной форме линейную систему с непрерывным временем можно записать в виде:

, где


А =(5)

С дискретным временем:

Xk+1 = AXk + BUk , где


Замкнем систему, положив , где k – коэффициент регулятора. Из соотношений (3) получим , и тогда с непрерывным временем система примет вид:



, где

(6)

С дискретным временем

, где

7 Оценка управляемости системы

С оставим матрицу К:

Ранг матрицы K равен 3, что равно размерности системы (5), следовательно, система управляема.

Найдем коэффициент k0 регулятора замкнутой системы на границе устойчивости по критерию Рауса-Гурвица.

Сначала составим характеристическое уравнение для системы (6).

(7)



Найдем k по критерию Рауса-Гурвица.

Определитель Рауса-Гурвица составляется из коэффициентов характеристического уравнения и имеет свойство . где ∆n и ∆n-1 определители матрицы, an свободный член характеристического уравнения.

Проверим ∆1, ∆2:

1 = |41.16| = 41.16 > 0

2 =

Условие границы устойчивости, если хотя бы один определитель будет равен нулю. Пусть ∆n=0, тогда аn=0. Получим:

, отсюда k0=0.169.



8 Оценка устойчивости системы

Найдем корни характеристического уравнения (7) λ1, λ2, λ3 при различном Коэффициенте регулятора k, k = k0*α = 0.169* α, где α=0.6..0.9.



Таблица 4 – Корни характеристического уравнения замкнутой системы

α=0.6

α=0.7

α=0.8

α=0.9

λ1

-1.13

-1.30

-1.45

-1.59

λ2

-2.29

-2.47

-2.64

-2.79

λ3

-40.00

-39.99

-39.97

-39.96

Построим графики изменения λ1, λ2, λ3.

Рисунок 6 – График изменения λ1

Рисунок 7 – График изменения λ2

Рисунок 8 – График изменения λ3



Действительные части собственных чисел матрицы системы всегда меньше нуля, следовательно, система устойчива.

9 Построение переходного процесса

Построим переходный процесс для системы (6) с начальными условиями t=0, ω(0)= 1.1ω0, μ(0)=0, Z(0)=0 по формуле:

, где

, - правые и левые собственные вектора системы.

Собственные числа:

λ1= 1.59

λ2= – 2.79

λ3= –39.96

Матрица правых собственных векторов

Матрица левых собственных векторов



Получим переходный процесс

в котором

Построим графики ω(t), μ(t), Z(t)

Рисунок 9 - Переходный процесс ω(t)

Рисунок 10 - Переходный процесс μ(t)



Рисунок 11 - Переходный процесс Z(t)



10 Нахождение передаточной функции для разомкнутой системы

Сделаем преобразование Лапласа над разомкнутой линейной системой, получим систему вида:

, или

Выразим ∆μ из первого уравнения:



Выразим ∆ω через U:

получили выражение вида , где W(p) есть передаточная функция комплексной переменной, имеющая вид:

(8)

11 Амплитудная, фазовая, вещественная, мнимая и амплитудно-фазовая частотные характеристики

Подставим в передаточную функцию (8) в качестве комплексного аргумента iω, получим:

Умножим числитель и знаменатель правой части на число сопряженное знаменателю, получим и выделим действительную и мнимую части передаточной функции Re(ω) и Im(ω):



Построим графики.

Рисунок 12 - График Re(ω) Рисунок 13 - График Im(ω)

Получим амплитудную, фазовую и амплитудно-фазовую частотные характеристики системы. Построим графики функций:

- амплитудная характеристика (рис. 14).

- фазовая характеристика (рис. 15).

Для АФХЧ отложим на графике по вертикальной оси значения мнимой части, а по горизонтальной действительной части, при ω=1..100 с шагом 0.001. Рисунок 16.



Рисунок 14 - График A(ω) Рисунок 15 - Графики Ф(ω)

Рисунок 16 - Годограф АФЧХ

Рисунок 17 - Годограф АФЧХ



12 Оценка устойчивости системы по критерию Найквиста, по критерию Михайлова

Оценим устойчивость системы по критерию Найквиста. Годограф АФЧХ не охватывает точку (-1,0), следовательно, система устойчива. Найдем запасы устойчивости системы по фазе и по амплитуде.

Запас устойчивости по фазе – это угол, на который нужно повернуть годограф АФЧХ, чтобы он охватывал точку (-1,0).

Из уравнения получаем ω0=2.551. Вычислим значение действительной части при ω0, Re(ω0) = -0.926. Тогда запас устойчивости по фазе вычисляется как:

Запас устойчивости по фазе равен 0.386 радиан.

Запас устойчивости системы по амплитуде – это расстояние от точки пересечения годографа АФЧХ с осью OX до точки (-1,0). Из уравнения получаем ω0=6.509. Вычислим Re(ω0)=-0.143. Тогда запас устойчивости системы по амплитуде будет равен 1-0.143=0,857

Оценим устойчивость системы по критерию Михайлова. Подставим в характеристическое уравнение разомкнутой системы iω вместо λ, выделим действительную и мнимую часть. Построим годограф Михайлова, отложив на графике по вертикальной оси значения мнимой части, а по горизонтальной действительной части, при ω=1..100 с шагом 0.001 (рис. 18).



Рисунок 18 - Годограф Михайлова

Рисунок 19 - Годограф Михайлова

Годограф Михайлова пересекает последовательно n квадрантов (n=3), следовательно, система устойчива.





Заключение



Результатом выполнения курсового проекта стало закрепление знаний по дисциплине «Основы теории управления», приобретены практические навыки для исследования поведения управляемой динамической системы, описанной системой дифференциальных уравнений. Были изучены возможности математических программных пакетов.



Библиографический список



  1. Советов Б.Я. Яковлев С.А. Моделирование систем: Учеб. для вузов – 3-е изд. – М.: Высшая школа, 2001. – 343 с.

Характеристики

Тип файла
Документ
Размер
7,69 Mb
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6485
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее