63351 (573387), страница 2
Текст из файла (страница 2)
Нижний контакт может быть сплошным при непрозрачной подложке и в виде сетки или набора точек малой площади для кристаллов с прозрачной подложкой. В последнем случае контактный сплав должен обладать хорошими отражающими свойствами.
На рис.2.2. показаны конструкции некоторых наиболее распространенных типов светодиодов и их диаграммы направленности. Как видно, существуют три типа светодиодов: в металлостеклянном (АЛ 102), пластмассовом (АЛ 307) корпусе и бескорпусные (АЛ 301). Первый тип светодиодов характеризуется высокой надежностью и стабильностью параметров, а второй – технологичностью и низкой стоимостью, большой стойкостью к действию ударных и вибрационных нагрузок, возможностью управления диаграммой направленности излучения в направлении как ее расширения, так и сужения.
Рис.2.2
Как правило, кристалл помещают в специальное углубление с отражающими свет стенками, что позволяет увеличить силу света в осевом направлении при одновременном улучшении восприятия излучения в результате расширения светящейся площадки и повышения контрастности.
Пластмассовый корпус светодиодов изготавливают в виде полусферической полимерной линзы, которая перераспределяет световой поток и формирует диаграмму направленности светодиода. Чаще всего такие линзы делают на основе эпоксидных компаундов с добавкой красителей или светорассеивающих наполнителей.
Светодиоды видимого диапазона характеризуются следующими основными параметрами: силой света IV, длиной волны излучения в максимуме спектральной полосы λmax (цветом свечения), полушириной спектральной линии излучения ∆λ, диаграммой направленности (или углом излучения φ), прямым напряжением Uпр при заданном прямом токе Iпр, световой отдачей по мощности или по току, внешним квантовым выходом ηвнш или КПД
,
. Для большинства светодиодов ηвнш примерно равен КПД.
Для ИК светодиодов вместо силы света IV используют силу излучения
(
, где к - видность излучения). В некоторых случаях важное значение имеют такие параметры и характеристики светодиодов, как быстродействие и зависимость силы света (излучения) от прямого тока.
Табл.2.1
| Материал | Структура энергетических зон | Цвет свечения | Длина волны λmax, мкм | Световая отдача | ||
| типичная | максимальная | |||||
| GaP: ZnO | Непрямая | Красный | 0,699 | 0,4 | 3,0 | |
| GaP: N | То же | Зеленый | 0,570 | 0,3 | 4,0 | |
| GaP: N | То же | Желтый | 0,590 | 0,2 | 0,5 | |
| GaAs0.35P0.65 | То же | Оранжевый | 0,632 | 0,4 | 0,9 | |
| GaAs0.15P0.85: N | То же | Желтый | 0,589 | 0,2 | 0,9 | |
| GaAs0.6P0.4 | Прямая | Красный | 0,649 | 0,15 | 0,4 | |
| Ga0.7Al0.3As | То же | Красный | 0,675 | - | 0,4 | |
| In0.42Ga0.58P | То же | Оранжевый | 0,617 | - | 0,3 | |
| SiC | Непрямая | Желтый | 0,590 | - | - | |
| GaN | Прямая | Зеленый | 0,575 | - | - | |
| GaxAl1-xAs | То же | ИК | 0,82-0,9 | - | - | |
| GaInAsP | То же | Видимый, ИК | 0,55-3,4 | - | - | |
Материалы, используемые для светодиодов, и их основные характеристики приведены в табл.2.1. Анализируя приведенные данные, нетрудно заметить, что отсутствуют материалы, позволяющие получать свечение в голубой и синей областях спектра. В настоящее время осуществляется интенсивный поиск таких материалов. Наиболее исследованными из них являются бинарные соединения типа АIIIВV с шириной запрещенной зоны Еg > 3,0 эВ: GaN, SiC, A1N и др.
Большие перспективы имеют тройные и четверные полупроводниковые соединения, ширина запрещенной зоны которых непрерывно меняется в зависимости от их состава. Используя четырехкомпонентные соединения, можно управлять шириной запрещенной зоны Е и постоянной кристаллической решетки а в довольно широких пределах. Например, для прямозонных соединений InGaAsP Еg меняется от 0,36 до 2,2 эВ (λ = 0,55-3,4 мкм при T = 300 К). В качестве подложек можно использовать GaAs или GaAsP.
ИК светодиоды изготавливают на основе GaAs, GaAlAs и GalnAsP. Наиболее эффективными из всех излучающих структур являются двойные гетероструктуры в системе GaAs/GaAlAs, для которых может быть получен ηвн, близкий к 100%, а ηвнш - более 45% в диапазоне длин волн 0,82-0,9 мкм. Как известно, качество гетероструктур определяется согласованием параметров решеток подложки и эпитаксиальных слоев, т.е. возможностью создания изорешеточной структуры. Для гетеропереходов GaAs/Ga1-хAlхAs параметры решеток практически совпадают в широком диапазоне составов тройного соединения. Поэтому возможно получение гетеропереходов с минимальной плотностью дислокаций на границе раздела активный слой - эмиттер.
3. Когерентные излучатели
Основной тип излучателей когерентной оптоэлектроники - инжекционные полупроводниковые лазеры (ППЛ). Они представляют собой миниатюрные твердотельные приборы, изготавливаемые методами планарно-эпитак-сиальной технологии. Рассмотрим современные конструктивно-технологические варианты и основные характеристики инжекционных ППЛ.
К числу важнейших параметров и характеристик инжекционных ППЛ от носят пороговый ток Iпор (плотность порогового тока Jпор), длину волны λ и полуширину спектра излучения ∆λ, энергию Е или мощность излучения Р, длительность τ и частоту f следования импульсов, диаграмму направленности (угол расходимости), модовый состав излучения, КПД, срок службы, модуляционные характеристики и др.
Совершенствование технологии создания ППЛ позволило значительно снизить пороговые токи при одновременном повышении дифференциального КПД ηдиф, определяемого тангенсом угла наклона ватт-амперной характеристики. Так, для типичного гомолазера Jпор
104-105А/см2, ηдиф
10% (приводятся усредненные значения, поскольку Jпор и ηдиф зависят от температуры, толщины активного слоя и уровня легирования). Однако уже для первых образцов гетеролазеров с односторонним ограничением, появившихся в 1969г. и содержащих один гетеропереход, удалось снизить Jпор до величины порядка 103А/см2 и повысить ηдиф до 40%. Несмотря на это, такие лазеры не способны работать в непрерывном режиме. При комнатной температуре может быть реализован импульсный режим работы с РИ = 10 - 30 Вт, f
25 кГц, τ
100 нс.
В том же году Ж.И. Алфёровым были созданы более эффективные ППЛ на основе двойных гетероструктур с Jпор
400 - 800 А/см2 и ηдиф > 55%, способные генерировать в непрерывном режиме при комнатной температуре.
Современная технология позволяет создавать гетеролазеры с контролируемым модовым составом излучения при Jпор
100 А/см2, генерирующим в диапазоне длин волн от 0,3 до 32 мкм. Активный слой изготавливают из легированных соответствующим образом трех - или четырехкомпонентных полупроводниковых соединений, выращенных методом газофазной, жидкофазной или молекулярно-лучевой эпитаксии на основе GaAs - или GaP-подложки. Высокой эффективностью вследствие малого рассогласования периодов кристаллических решеток отличаются гетероструктуры типа GaAs/GaAlAs, InP/GalnAsP, InP/AlGaAsSb, CdTe/CdHgTe и др.
Рис.3.1
На рис.3.1. приведены наиболее распространенные конструкции инжекционных ППЛ. Импульсные лазеры имеют обычно широкие контакты, плоский или гофрированный активный слой (рис.3.1, а, б). Для большинства непрерывных лазеров, работающих при комнатной температуре, характерна полосковая геометрия с резонатором, образованным зеркальными сколами торцевых поверхностей кристалла. Полосковый контакт (рис.3.1, в) обеспечивает уменьшение ширины активного слоя W до величины 3-25 мкм и резкое снижение порогового тока. На практике применяют различные методы формирования полосковых структур – с использованием окисной изоляции (рис.3.1, в), мезаструктур, создание высокоомных областей, окружающих активный слой с боковых сторон, и др. При W < 10 мкм удается устранить возникновение в пределах активного слоя нескольких областей с высокой интенсивностью излучения (так называемых световых "шнуров"), которые можно трактовать как поперечные моды. На рис.3.2. показана структура таких мод при различной ширине активного слоя W. Видно, что при W = 10 мкм излучается одна мода, характеризуемая гауссовским распределением интенсивности.
Рис.3.2
Гетероструктура с канавкой, которую формируют перед выращиванием эпитаксиальных слоев (рис.3.1, г), обеспечивает одномодовую генерацию. Иногда толщину слоев гетероструктуры делают переменной, а сами слои располагают наклонно, как, например, в ППЛ «террасного» типа (рис.3.1, д). Минимальный по ширине пучок излучения характерен для ППЛ с «зарощенной» мезаполосковой структурой (рис.3.1, е), с V-образной структурой (рис.3.1, ж) и с поперечным p-n-переходом (рис.3.1, з).
Наилучшими характеристиками обладают инжекционные ППЛ с «зарощенной» мезаполосковой гетероструктурой, в которых активная область имеет форму полоски прямоугольного сечения площадью dW < 1 мкм2, погруженной в среду с меньшим показателем преломления и более широкой запрещенной зоной. Эффективная электрическая изоляция вне активной области и малый объем активной области позволяют снизить пороговые токи до нескольких миллиампер, а потребляемую электрическую мощность – до нескольких десятков милливатт. Такие ППЛ имеют достаточно высокий КПД, могут излучать в одномодовом и даже одночастотном режиме мощность до 5 мВт, обладают хорошими модуляционными характеристиками (fмод > 2 ГГц). Срок их службы превышает 10 000 ч.
При необходимости увеличить мощность излучения используют ППЛ с дополнительными волноводными слоями, называемыми BOG-Lasers (лазеры с «большим» оптическим резонатором). Такие лазеры при длине резонатора 300 мкм, ширине 2-4 мкм и толщине активного слоя 0,1 мкм стабильно генерируют в одномодовом режиме мощности более 10 мВт (с защитными покрытиями на зеркалах до 30 мВт) при КПД выше 30%. Типичные значения Jпор составляют 1,4-1,8 кА/см2, минимальный пороговый ток в непрерывном режиме 9 мА.
В настоящее время ведутся работы по совершенствованию инжекционных ППЛ, направленные на увеличение срока их службы, КПД, мощности излучения, расширение диапазона длин волн генерируемого излучения, создание перестраиваемых лазеров. Одна из наиболее актуальных задач, особенно для непрерывных лазеров, - увеличение гарантийного срока службы до 100 000 ч, характерного для других элементов электронной техники. В связи с этим тщательно исследуются механизмы деградации инжекционных ППЛ, связанные с длительным протеканием электрического тока большой плотности и "старением" полупроводникового материала.















