62385 (573286), страница 2
Текст из файла (страница 2)
(должно быть).
Значимость коэффициентов bi уравнения регрессии определяют по t-критерию (критерии Стьюдента):
,
.
Идентификация объектов управления методом корреляционного анализа
Метод корреляционного анализа используется для идентификации объектов управления в том случае, если входные и выходные сигналы являются случайными величинами.
Рис. 5. Схема исследования объекта корреляционным методом
При корреляционном анализе используются:
-
автокорреляционная функция (АКФ) и
-
взаимокорреляционная функция (ВКФ).
АКФ характеризует зависимость последующих значений случайной величины от предыдущих, находящихся на расстоянии .
Рис. 6. График изменения входной случайной величины – входного сигнала
АКФ:
.
При 0 – точнее.
Взаимокорреляционная функция связывает две величины, отстоящие друг от друга на .
ВКФ:
.
С АКФ и ВКФ связаны (через преобразование Фурье, когда входной-выходной сигнал раскладывается в ряд Фурье, состоящий из суммы синусоидальных колебаний с различной – ряд гармоник) спектральные плотности случайных величин.
– для АКФ,
– для ВКФ.
Физически показывает, какая доля мощности случайной величины приходится на данную частоту.
Через спектральную плотность находим АФЧХ объекта:
.
Техническая диагностика систем
Техническая диагностика – наука о распознавании состояния технической системы. Диагнозис (гр.) – распознавание.
Объект технического диагностирования – изделие и его составные части, техническое состояние которых подлежит определению с заданной точностью.
Техническое состояние – совокупность свойств объекта, характеризуемая в данный момент времени признаками, установленными технической документацией на объект.
Техническое состояние может быть:
-
исправное-неисправное;
-
работоспособное-неработоспособное;
-
функционирующее правильно и неправильно.
Диагностирование по алгоритму – это совокупность предписаний с использованием диагностических признаков.
Система технического диагностирования – совокупность средств и объекта диагностирования, а также и исполнителей, осуществляющих диагностирование по правилам, установленным соответствующей документацией. Система технической диагностики определяет состояние технического объекта, характер его изменения с течением времени, по определенным диагностическим признакам.
Теоретический фундамент технической диагностики – теория распознавания образов, разработка алгоритмов распознавания, создание диагностических математических моделей, устанавливающих связь между состояниями технической системы и их отображением в пространстве диагностических признаков (сигналов). Диагнозы – классы типичных (типовых) состояний.
Важная часть распознавания – правила принятия решений (решающие правила).
Диагностика в режиме работы объекта называется функциональным техническим диагностированием.
Диагностика, когда проводятся тестовые воздействия – тестовая техническая диагностика.
В технической диагностике введено понятие глубины поиска дефекта, задаваемое указанием составной части объекта диагностики, с точностью, до которой определяется место дефекта. Обычно это модуль или блок, иногда даже микросхема (ЛОМИКОНТ).
Актуальность технической диагностики подтверждается следующими цифрами: в США исследования показали техническое обслуживание и ремонт самолета в 3-4 раза больше его стоимости, ремонт и обслуживание радиотехнического оборудования – 1200% от его стоимости. В СССР (по 181 г.) ремонтом и обслуживанием металлорежущих станков занимались в 4 раза больше рабочих, чем изготовлением этого оборудования. Стоимость заводского ремонта в ВВС США в 187 г. составила 15 млрд. долл., что в 2 раза больше, чем в 180 г.
Тенденция роста убытков, связанных с отказами техники, имеет место во всех развитых странах. Отказы, неисправности, поломки, сбои, ошибки и даже катастрофы – неизбежные факторы, дестабилизирующие процесс нормального функционирования объекта и системы управления. Имеется 3 причины отказов и катастроф:
а) применение малоизученных физических явлений для создания изделий;
б) несоблюдение принципа системности при проектировании изделий; применение несовершенных и неадекватных расчетных схем;
в) "человеческий фактор" в разработке, производстве и эксплуатации изделий ("защита от дурака").
Так, например, недостаточная изученность свойств материалов и несовершенство расчетов привели к катастрофе в США реактивного пассажирского самолета "Комета", который развалился в воздухе. Причина – прямоугольные иллюминаторы, в углах которых возникла концентрация напряжений, что привело к разрушению корпуса самолета. Второй пример. В 167 г. во время наземных испытаний космического корабля "Аполлон" США возникло короткое замыкание в проводе под креслом космонавта – мгновенный пожар в избытке кислорода – погибли 3 человека. В США подсчитано в 156 г., что из-за ошибок рабочих и служащих возникло 2 млн. отказов промышленного оборудования, что стоило 2 млрд. долл. Причина большинства авиакатастроф – "человеческий фактор".
Объективность "человеческого фактора" и необходимость его учета отражена в шуточных законах Мэрфи:
-
Инструмент падает туда, где может нанести наибольший вред.
-
Любая трубка при укорачивании оказывается слишком короткой.
-
После разборки и сборки какого-либо устройства несколько деталей оказываются лишними.
-
Количество имеющихся в наличии запчастей обратно пропорционально потребности в них.
-
Если какая-либо часть устройства может быть смонтирована неправильно, то всегда найдется кто-нибудь, кто так и сделает.
-
Все герметические стыки протекают.
-
При любом расчете число, правильность которого для всех очевидна, становится источником ошибок.
-
Необходимость внесения в конструкцию принципиальных изменений возрастает непрерывно по мере приближения к завершению проекта.
Необходимость в разработке научно обоснованных методов технической диагностики и технических средств для реализации диагностических систем и комплексов подтверждают результаты исследований, по которым установлено, что специалист 25% времени тратит на определенные части изделия, где произошла неисправность, 62% – на определение неисправной детали и только 13% времени – на восстановление отказавшей детали. Техническое диагностирование использует технические математические модели. Отличие диагностических моделей от обычных математических моделей, которые отражают номинальный режим функционирования объекта или системы управления состоит в том, что диагностическая модель описывает существенные свойства аварийных режимов, вызванных различными отказами. Объект или система при разработке диагностической модели рассматриваются по следующей схеме (рис. 3.):
Рис. 7. Схема разработки диагностической модели объекта или системы управления
Иерархия диагностических моделей (ДМ)
Рис. 8. Иерархия диагностических моделей
Из схемы видно, что диагностические модели могут быть различной сложности: от простых описательных (текст) до математических моделей высокого уровня.
Классификация отказов
а) по степени влияния: полные, частичные;
б) по характеру проявления: окончательные, перемежающиеся;
в) по степени связи: зависимые, независимые;
г) по частоте проявления: однократные, многократные;
д) по характеру возникновения: внезапные, постепенные;
е) по математическим моделям: параметрические, сигнальные;
ж) по видам проявления: обрывы, короткие замыкания, дрейф, переориентация, изменение эффективности.
Задачи диагностирования по следующей схеме (рис. 9.):
Рис. 9. Схема диагностирования по отказам
Для диагностики моделей используется (см. классификацию) множество физических видов отказов – диагностических признаков.
В качестве прямых диагностических признаков соответствующего отказа используют i = i - iном – отклонение диагностического параметра i от номинального значения. Косвенные диагностические признаки оценивают через отклонение величины xвых – выходного сигнала объекта (системы).
Разработка диагностического обеспечения системы управления или объекта идет по следующей схеме (рис. 10.):
Рис. 10. Схема разработки диагностического обеспечения системы управления или объекта
Математическая постановка задачи технического диагностирования объекта (системы управления)
Пусть:
а) задана система линейная с постоянными характеристиками на отдельном отрезке времени стационарная, работающая в номинальном режиме;
б) задано множество контрольных точек;
в) задано множество физических отказов с характеристикой отказов;
г) задано множество тестовых и рабочих сигналов управления;
д) задано время диагностирования ОУ (СУ).
Требуется:
Провести техническое диагностирование ОУ (СУ) в целях контроля технического состояния – обнаружение отказов, поиск места и определение причин отказа.
При вероятностных методах распознавания технического состояния системы вероятность постановки диагноза , где Ni – число состояний объекта из общего числа состояний N, у которых имел место диагноз Di, а P(kj/Di) – вероятность появления диагностического признака kj у объекта с диагнозом Di. Если среди Ni состояний объектов, имеющих диагноз Di, у Nij появился признак kj, то
Вероятность появления диагностического признака kj во всех состояниях объекта N независимо от их диагноза с учетом того, что kj появляется только в Nj состояниях объекта, равна:
.
Из изложенного выше вытекает, что вероятность совместного появления следующих событий: наличия у объекта диагноза Di и диагностического признака kj – равна:
.
Отсюда:
– формула Байеса.
Формула Байеса неточно отражает реальное положение при постановке диагноза Di при наличии диагностического признака kj. Дело в том, что в этой формуле априорно (без доказательства, заранее) принято, что все диагностические признаки имеют равную вероятность появления в реальных условиях работы системы, при этом не учитывается информационная ценность того или иного диагностического признака.
Информационная ценность диагностического признака определяется количеством информации, которое вносит данный диагностический признак в описание технического состояния объекта управления (ОУ) или системы управления (СУ).
Количество информации связано с энтропией (степенью неопределенности) состояния системы, чем выше определенность состояния системы (меньше энтропия), тем меньше информации мы получим, изучая (диагностируя) эту систему (о ней и так почти все известно).
Энтропия (степень неопределенности) системы по Шеннону (разработчик теории информации) находят по формуле: