183492 (566985)

Файл №566985 183492 (Класична лінійна регресія)183492 (566985)2016-07-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

ЛАБОРАТОРНА РОБОТА №1

ТЕМА: КЛАСИЧНА ЛІНІЙНА РЕГРЕСІЯ

Мета: Дослідити метод побудови загальної лінійної регресії та провести аналіз її основних характеристик

Задача: Навчитися отримувати оцінки параметрів загальної лінійної регресії за допомогою 1МНК, визначати статистичні властивості окремих оцінок і моделі в цілому, будувати точковий та інтервальний прогнози за допомогою отриманої моделі. Дослідити альтернативні способи оцінки параметрів лінійної регресії.

Завдання: Для даних з варіанту перевірити гіпотезу про лінійну залежність між змінними Y і X1, X2, X3.

Необхідно:

Побудувати загальну лінійну модель і оцінити коефіцієнти регресії за допомогою оператора 1МНК.

Оцінити значущость окремих коефіціентів регресії і всієї моделі в цілому.

Побудувати точковий та інтервальний прогноз на 3 періоди.

Розрахувати оцінки коефіціентів регресії методом покрокової регресії.

Результати надати у звіті в письмовому вигляді.

Звіт містить дані варіанту, проміжні розрахунки, кінцеві результати кожного етапу дослідження з необхідними поясненнями і висновками

КОРОТКІ ТЕОРЕТИЧНІ ВІДОМОСТІ

1. Економетрична модель дає кількісну оцінку кореляційно-регресійного зв'язку між економічними показниками, один чи кілька з яких є залежними (Y), а решта — незалежними змінними (X), тому часто економетричні моделі називаються регресій ними моделями, або просто регресіями.

Припустимо, що істинний зв’язок між Y і Х є лінійним, тобто

0 + 1X1 + 2X2 + ……. + mXm+

або у матричному вигляді:

Y = X + ,

де Y- вектор залежних змінних моделі;

Х – матриця незалежних змінних моделі;

- вектор відхилень моделі;

- вектор параметрів моделі

Y = , Х = , = , =

Розглянемо його оцінку за допомогою лінійної регресійної моделі:

= b0 + b1X1 + b2X2 + ……. + bmXm

Оцінки параметрів цієї регресії знаходяться з умови:

(1)

де е – вектор залишків моделі,

.

Продиференціювавши (1) по bj і прирівнявши відповідні часткові похідні по bj до 0, отримаємо такий вираз:

,

домноживши вираз зліва на , отримуємо вираз для знаходження вектора b:

Цей вираз називається основним оператором оцінювання параметрів лінійної моделі, а елементи вектора b є оцінками коефіцієнтів лінійної регресії.

6. Якщо виконуються всі необхідні умови для застосування 1МНК, то оцінки параметрів економетричної моделі мають такі властивості:

1) незміщеності; 3) ефективності;

2) обґрунтованості; 4) інваріантності.

7. Одним з важливих завдань економетричного моделювання — оцінити прогнозне значення залежної змінної за умови, що пояснювальні змінні задані на перспективу. На основі економетричної моделі можна отримати точковий та інтервальний прогнози залежної змінної на перспективу.

8. Незміщена оцінка точкового прогнозу запишеться так:

M[У00)]=Х0 B,

де Х0 — заданий рівень пояснюючої змінної на перспективу;

Y0 точковий прогноз залежної функції на основі економетричної моделі.

9. Дисперсія прогнозу дорівнює:

його стандартна помилка :

10. Довірчий інтервал для прогнозних значень:

t - значення t-крітерію при n-m ступенях свободи і рівні значущості .

11. З огляду на залежність між оцінками параметрів моделі та коефіцієнтами парної кореляції можна запропонувати альтернативну оцінку параметрів 1 МНК на основі покрокової регресії, ідея якої базується на існуванні залежності між оцінками параметрів моделі та коефіцієнтами парної кореляції. Ця залежність пропорційна до відношення середньоквадратичних відхилень залежної та незалежної змінних.

12. Опишемо алгоритм пошагової регресії.

Крок 1. Усі вхідні дані стандартизують:

де y* - нормалізована залежна змінна;

х* - нормалізовані незалежні змінні.

Крок 2. Знаходять кореляційну матрицю (матриця парних коефіцієнтів кореляції):

r* = ,

де - парні коефіцієнти кореляції між Y і незалежними змінними Х,

де n – кількість спостережень;

- парні коефіцієнти кореляції між Хj i Xi :

.

Крок 3. Вибирають . Відповідну незалежну змінну xj включають в лінійну модель, для якої за допомогою 1МНК знаходять оцінки параметрів:

де - оцінки параметрів моделі, яка будується на основі нормалізованих даних.

Крок 4. Серед тих, що залишилися, значень вибирається максимальний і в модель вводиться наступна незалежна змінна xl.

.

Оцінюються параметри за допомогою відношення:

r = rxy,

де r – матриця парних коефіцієнтів кореляції між незалежними змінними;

ryx - вектор парних коефіцієнтів кореляції між залежною та незалежними змінними.

Звідси оператор оцінювання параметрів моделі:

Якщо немає обмеження на кількість введених змінних, обчислення виконуються до тих пір, поки не будуть включені всі змінні.

Зв’язок між оцінками параметрів моделі на основі нормалізованих і ненормалізованих змінних запишеться таким чином:

.

13. Тіснота зв’язку загального впливу від незалежних змінних на залежну визначається коефіцієнтами детермінації і множинної кореляції. Коефіцієнт детермінації без урахування числа ступенів свободи

з урахуванням ступенів свободи:

.

14. Коефіцієнт детермінації показує, на скільки процентів варіація залежної змінної визначається варіацією пояснюючих (незалежних) змінних.

Коефіцієнт кореляції є інваріантною оцінкою коефіцієнта детермінації. Він характеризує тісноту зв'язку між залежною і пояснювальними змінними. Визначається як корінь квадратний від R2.

15. Оскільки коефіцієнти детермінації і кореляції є вибірковими характеристиками, то їх числові значення також перевіряються на значущість згідно зі статистичними гіпотезами. Для перевірки значущості коефіцієнта кореляції використовується t-критерій.

Нульова гіпотеза: значення коефіцієнту кореляції несуттєво відрізняється від 0.

Розрахункове значення критерію визначається як:

Якщо розрахункове значення цього критерію t не менше за критичне (табличне) tтаб при вибраному рівні довіри і ступені свободи n - m, тобто t tтаб , нульова гіпотеза відхиляється і відповідний коефіцієнт кореляції є достовірним.

16. Гіпотеза про істотність зв'язку між залежною і незалежною змінними може бути перевірена з допомогою F-критерію. Нульова гіпотеза: всі коефіцієнти регресії несуттєво відрізняються від 0, тобто Н0: b0 = b1 = …….. =bm = 0.

Розрахункове значення F-критерію визначається за формулою:

або в альтернативному запису:

Розрахункове значення порівнюється з табличним Fтаб при n-m i m-1ступенях свободи та вибраному рівні довіри . Якщо F Fтаб , нульова гіпотеза відхиляється і істотність моделі підтверджується, в протилежному випадку – відхиляється.

17. Гіпотезу про значущість кожного з параметрів bj економетрічної моделі можна виконати за допомогою t-крітерію. Нульова гіпотеза: bj несуттєво відрізняються від 0, тобто H0: bj = 0. Розрахункове значення t-критерію:

де cjj – діагональний елемент j-ї строки (стовпця) матриці ,

- стандартна помилка оцінки j-го параметра моделі.

Якщо t tтаб , нульова гіпотеза відхиляється і відповідний коефіцієнт регресії є достовірним.

18. На основі t-критерію і стандартної помилки будуються граничні інтервали для оцінок параметрів моделі:

де t - табличне значення t-статистики з рівнем довіри та ступенями свободи n-m.

ПРИКЛАД ВИКОНАННЯ ЛАБОРАТОРНОЇ РОБОТИ

Нехай маємо змінні:

- середньомісячна зарплата, ум. од.;

- продуктивність праці, ум. од.;

- фондомісткість продукції ум. од;

- виконання норми виробітку,%

Гіпотеза, що пропонується для перевірки - середньомісячна зарплата лінійно залежить від продуктивності праці, фондомісткості продукції та виконання норми виробітку.

Позначимо Y - середньомісячна зарплата, X1 - продуктивність праці, X2 - фондомісткість продукції, X3 - виконання норми виробітку/

Вихідні дані наведено в таблиці.

номер цеху

середньомісячна з/п,Y

Продуктивність праці, X1

ФондомісткістьX2

Норма виробітку, X3

1

45

265

0,2

130

2

42

236

0,04

127

3

50

257

0,3

151

4

55

279

0,2

149

5

40

226

0,1

140

6

70

350

0,1

141

7

56

278

0,25

152

8

57

262

0,03

188

9

55

269

0,15

120

10

53

250

0,32

126

Матриця Х доповнюється стовбцем одиниць для врахування коефіцієнта регресії b0:

1. Оцінимо параметри регресії за допомогою 1МНК.

Підготуємо необхідні проміжні матриці:

Характеристики

Тип файла
Документ
Размер
1,08 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее