48584 (566527)

Файл №566527 48584 (Разработка математической модели на основе описанных методов)48584 (566527)2016-07-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Цель работы: Получить навыки описания метода решения математической модели на примере решения задач аналитической геометрии.

Задание: 1) Согласно заданному варианту описать методы решения задачи.

2) На основе описанных методов разработать математическую модель.

Задача: Задано множество точек, найти параметры окружности минимального радиуса, проходящие через три точки множества.

Ход работы

І)Математическая постановка задачи:

1 ) Найти наименьший радиус окружности по формуле: i : = 1…n

D= , где ;

j : = 1… 2)D1,D2,D3- радиусы окружности;

3) X Y , X Y , X Y , X Y - координаты точек множества;

4 ) D= -формула нахождения расстояния между двумя точками;

5)

-система уравнения или неравенства;

6 )

-совокупность уравнения или неравенства;


7) -знак больше

-знак меньше

=-знак равно;

8) A, B, C, E- некоторые точки с определенными координатами

ІІ) Описание методов решения:

Метод 1. Метод заключается в том , что бы найти наименьший радиус окружности с помощью последовательного соединения точек с одной, а затем проделывания этого с каждой из точек множества. Затем, с помощью формулы нахождения расстояния между двумя точками

(D= ),необходимо вычислить длины получившихся отрезков. После вычисления отрезки необходимо сравнить между собой. В результате если два отрезка, выходящие из одной точки, равны - это и есть радиусы окружности. Но из условия, поставленные задачей, необходимо найти минимальный радиус окружности проходящей через три точки множества. Если при сравнении несколько пар одинаковых отрезков - необходимо найти наименьшую пару – это и будет минимальный радиус окружности. (Рис.№1)


Рис.№1

Метод 2.Второй метод заключается в том, что бы искать минимальный радиус окружности при помощи соединения множество точек между собой, и в результате получение множество геометрических фигур ( в данном случае геометрические фигуры – треугольники). Затем необходимо найти расстояние сторон треугольника. Для этого возьмем формулу нахождения расстояния между двумя точками (D= ). В случаи, если стороны выходящие из одной точки равны – это и есть радиусы окружности, так как через равные отрезки, выходящие из одной точки можно провести окружность с центром точки соединения этих отрезков. В случае, если в конечном результате вычисления несколько равных сторон, выходящих из одной точки, необходимо найти минимальный радиус окружности. Минимальным радиусом будут стороны с наименьшей длиной (рис.№ 2).

ІІІ) Анализ метода решения:

Первый метод более эффективен, чем второй, так как требует меньшее количество арифметических расчетов, и в памяти будет занимать меньшее количество ресурсов.

ІY) Формализация выбранного метода:

  1. D1=

D2=

D3= ;

  1. Если D1=D3, то выполняется пункт 3, иначе пункт 4;

  2. D1, D3 - радиусы окружности;

  3. Если D2=D3, то выполняется пункт 5, иначе пункт 6;

  4. D2, D3 – радиусы окружности;

  5. Если D1=D2 , то выполняется пункт 7, иначе пункт 8;

  6. D1, D2 – радиусы окружности;

  7. Если D1=D2 , и/или D2=D3, и/или D1=D3, то выполняется пункт 9;

  8. В случаи пункта 8 необходимо сравнить на меньший радиус:

D1=D2 D1=D3 D2=D3

D1 D3 D1 D2 D2 D1

D1 D3 D1 D2 D2 D1

D2 D3 D3 D2 D3 D1

D2 D3 D3 D2D1 D3 D1

10) Затем необходимо повторить это с оставшимися точками пока не перегенирируются все точки.

YІ. Геометрическое решение задачи


A= (-5;0);

B= (-3;2);

E= (0;1);

C= (-3;-2), так как D= , отсюда

1) AB=

AE=

AC=

Так как AB=AC, AB AE, AC AE, значит АВ и АС- радиусы окружности с центром в точке А.

2) АВ=

ЕВ=

СВ=

Так как АВ ЕВ, ЕВ СВ, АВ СВ, значит АВ, ЕВ, СВ- не являются радиусами окружности и точка В- не является центром окружности.

3) АЕ=

СЕ=

ВЕ=

Так как АЕ СЕ, СЕ ВЕ, АЕ ВЕ, значит АЕ, СЕ, ВЕ- не являются радиусами окружности и точка Е- не является центром окружности.

4) АС=

ЕС=

СВ=

Так как АС ЕС, ЕС СВ, АС СВ, значит АС, ЕС, СВ- не являются радиусами окружности и точка С- не является центром окружности.

Из данного множества точек можно провести только одну окружность с минимальным радиусом, проходящей через три точки множества. Отсюда следует, что минимальным радиусом являются отрезки АВ и АС.

Алгоритм реализации:

в ыполнять

ввод

n


пока ((n>3) и (n<20))

д ля i:=1..m

Вывод

‘Введите координаты’,I,’-ой точки.’


Ввод

D[i].x, D[i].y


Вывод

‘D[‘,i,’].x =’,D[i].x;

‘D[‘,i,’].y =’,D[i].y;


для i:=1..(n-3)

для k:=i+1..(n-2)

для l:=j+1..(n-1)

для j:=l+1...n


dk:= (D [i].x-D [k].x)²+(D [i].y-D [k].y)²;

dl:= (D [i].x-D [l].x)²+( D[i].y-D [l].y)² ;


dj= (D [j].x-D [j].x)²+(D [j].y-D [j].y)² ;


Если (dk=dl) или (dk=dj) тогда

Вывод

‘Точка ',i,'- является центром окружности!'

И наче

Вывод

'Точка ',i,' не является центром окружности!'


Е сли (dk=dl) или (dj=dl) тогда

Вывод

' dl- возможный радиус окружности!'

Иначе

Вывод

'dl-не образует радиус..'

Если (dk=dj) или (dk=dl) тогда

Вывод

' dk- возможный радиус окружности!'

Иначе

Вывод

'dk-не образует радиус.. '

Если (dj=dl) или (dj=dk) тогда

Вывод

' dj- возможный радиус окружности!’

И наче

Вывод

' dj-не образует радиус’

если (dk

Вывод

' dk- Наименьший радиус окружности!'

Если (dk

Вывод

' dl- Наименьший радиус окружности!'

Если (dk=dj) и (dl=dk) тогда

Вывод

' dk и dj и dl- Наименьший радиус окружности!'

Листинг программы:

Program alex;

uses crt;

Type Point = Record

x,y : real;

End;

pnt = Array [1..20] Of Point;

var

q, nstr,cstr:string;

c:char;

D:pnt;

l,n,i,k,j,code:integer;

di,dj,dk,dl,Dmin:real;

begin

clrscr;

writeln(' Донецкий государственный институт искусственного интеллекта');

writeln;

writeln;

gotoxy(40,6);

write('Кафедра програмного обеспечения');

gotoxy(40,7);

writeln(' интеллектуальных систем');

gotoxy(19,10);

writeln(' Лабораторная работа #2');

writeln(' по курсу:"Алгоритмизация вычислительных процессов"');

writeln(' тема:"Разработка алгоритмов и программы"');

gotoxy(60,20);

write('Выполнил:');

gotoxy(60,21);

write(‘');

gotoxy(60,22);

write();

writeln;

writeln;

writeln;

write('Нажмите любую клавишу');

readkey;

clrscr;

writeln(' Задание: Задано множество точек. Найти параметры окружности');

writeln('минимального радиуса проходящей через три точки множества.');

gotoxy(1,25);

write('Нажмите любую клавишу...');

readkey;

clrscr;

repeat

Writeln('Введите количество точек');

readln(nstr);

writeln;

val(nstr,n,code);

if (code<>0) then

begin

clrscr;

writeln('Это не число! Попробуйте еще раз.');

n:=5;

end;

if not( n in[3..20]) then

begin

clrscr;

code:=1;

writeln('Число не находится в заданном диапазоне! Попробуйте еще раз')

end;

until (code=0);

clrscr;

for i:=1 to n do

begin

repeat

write('Введите координату Х ',i,'-ой точки: ');

readln(cstr);

val(cstr,D[i].x,code);

if (code<>0) then

begin

writeln('Это не число! Попробуйте еще раз.');

continue

end;

clrscr;

if ((D[i].x>100) or (D[i].x<-100)) then

begin

clrscr;

writeln('Диапазон координат точек от -100 до 100!');

code:=1;

continue

end;

until (code=0);

repeat

write('Введите координату Y ',i,'-ой точки: ');

readln readln val(cstr,D[i].y,code);

if (code<>0) then

begin

clrscr;

writeln('Это не число! Попробуйте еще раз.');

code:=1;

continue

end;

clrscr;

if ((D[i].y>100) or (D[i].y<-100)) then

begin

clrscr;

writeln('Диапазон координат точек от -100 до 100!');

code:=1;

continue

end;

until (code=0);

end;

for i:=1 to n do

begin

writeln('D[',i,'].x=',D[i].x);

writeln('D[',i,'].y=',D[i].y);

end;

for i:= 1 to (n-3) do

for k:= i+1 to (n-2) do

for l:= k+1 to (n-1) do

for j:= l+1 to n do

begin

begin

begin

begin

dk:=Sqrt(Sqr(D[i].x-D[k].x)+Sqr(D[i].y-D[k].y));

dl:=Sqrt(Sqr(D[i].x-D[l].x)+Sqr(D[i].y-D[l].y));

dj:=Sqrt(Sqr(D[i].x-D[j].x)+Sqr(D[i].y-D[j].y));

Dmin:=dk;

begin

if (dk=dl) or (dj=dl) then

writeln ('',dl:7:2,' dl-возможный радиус окружноости')

else

writeln ('dl-не образует радиус');

if (dk=dj) or (dk=dl) then

writeln ('',dk:7:2,' dk-возможный радиус окружности')

else

writeln ('dk-не образует радиус');

if (dj=dl) or (dj=dk) then

writeln ('',dj:7:2,' dj-возможный радиус окружности')

else

writeln ('dj-не образует радиус');

if (dk=dl) or (dk=dj) then

writeln ('Точка ',i,' является центром окружности')

else

writeln ('Точка ',i,' не является центром окружности!');

end;

begin

if (dk

writeln ('dk i dl-наименьший радиус окружности') ;

if (dk

writeln ('dk i dj-наименьший радиус окружности');

if (dk=dj) and (dk=dl) then

writeln ('dk i dj i dl-наименьший радиус окружности');

end;

end;

end;

end;

end;

readLn;

end.

Экранные формы:

Вывод:

В ходе лабораторной работы я изучил навыки описания метода решения математической модели на примере решения задач аналитической геометрии.

Характеристики

Тип файла
Документ
Размер
10,15 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее