48162 (566495)
Текст из файла
НАЦИОНАЛЬНИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ
“КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ”
ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ
Кафедра физико–технических средств защиты информации
Лабораторная работа
по предмету Обработка широкополосных сигналов
Представление сигналов в базисе несинусоидальных ортогональных функций
Выполнил студент гр. ФЕ-21
Коваленко А.С.
Киев 2008
Введение
Представление сигналов в базисе несинусоидальных ортогональных функций. Обобщенный ряд Фурье. Функции Радемахера. Представление сигнала с конечной энергией в базисе функций Хаара.
Цель работы: Изучение особенностей кусочно-постоянных ортогональных функций Радемахера и Хаара. Получение практических навыков расчета спектров сложных сигналов, используя преобразование Хаара.
Теоретические сведения
Обобщенный ряд Фурье
Обобщенный ряд Фурье сигнала
в выбранном базисе
для сигнала с конечной энергией
может быть представлен в виде ряда
,
где
– коэффициент разложения, определяющий спектр сигнала;
– система ортонормированных вещественных функций (базис), причем для произвольных функций, ортонормированных на интервале
, можно записать
Коэффициенты разложения
определяются следующим образом
.
Для минимизации времени вычислений необходимо выбирать систему базисных функций по возможности более согласованную по форме с исследуемым сигналом. Причем необходимо также учитывать возможность более простой аппаратной или программной реализации базиса. Для импульсных сигналов представляет интерес разложение
в базисах функций Хаара, Уолша и др.
Дискретное преобразование Фурье (ДПФ)
Спектральная плотность
дискретного сигнала
определяется выражением
, (1.1)
где n – номер дискретного отсчета непрерывной функции;
- период дискретизации непрерывной функции x(t).
Согласно выражению (1.1) спектр дискретного сигнала сплошной. Но таковым он бывает только лишь при условии, что объем выборки дискретного сигнала бесконечен. В приложениях выборка отсчетов сигнала всегда конечномерна. Кроме того, по многим причинам желательно вычислять преобразование Фурье на ЭВМ. Это означает, что конечномерной является не только выборка дискретных отсчетов сигнала, но и соответствующее этой выборке число гармоник спектра дискретного сигнала.
Каждая спектральная линия состоит из амплитудной и фазовой составляющих. Следовательно, из N данных отсчетов можно получить амплитуды и фазы для N/2 дискретных частот, которые находятся в интервале от
до
, где
- частота дискретизации равная
.
Соответствующие спектральные линии повторяются в интервале от
до
. В области от
до
можно построить N линий для частот
,
где k = 0, 1, …, N –1. Если в уравнении (1.1) заменить
на
, то получим уравнение полностью дискретное как по времени, так и по частоте и поэтому удобное для вычислений на ЭВМ.
;
,
где k = 0, 1, …, N –1.
Выражение для обратного ДПФ следующее:
,
где n = 0, 1, …, N –1.
Быстрое преобразование Фурье (БПФ)
Классические формы прямого и обратного ДПФ просты и легко реализуемы на ЭВМ. Однако их практическое применение ограничивается большими объемами вычислений, которые растут в квадратичной зависимости от объема выборки
. Так, если число отсчетов временной функции
составляет N, то полный спектр
-мерной последовательности дискретных сигналов определяется посредством приблизительно
комплексных операций умножения и сложения. При достаточно больших
может оказаться, что ресурса даже высокопроизводительных ЭВМ недостаточно для вычисления спектра в реальном времени (т.е. в темпе поступления входных данных). Существуют различные способы сокращения объема вычисления при определении дискретно спектра, которые приводят к алгоритмам быстрого преобразования Фурье. Алгоритмы БПФ основаны на устранении избыточности вычислений. Покажем на примере.
Допустим, что нужно рассчитать число А
А = ac + ad + bc + bd
В записанном виде расчет содержит четыре операции умножения и три сложения. Если число А нужно считать много раз для разных множеств данных, то его представляют в эквивалентной форме:
А = (a+b) (c+d)
которая требует выполнения лишь одной операции умножения и двух операций сложения.
Основная идея БПФ заключается в разделении исходной
- точечной последовательности входных сигналов на две более короткие последовательности, ДПФ которых можно скомбинировать таким образом, чтобы получилось ДПФ исходной
- точечной последовательности. Так, например, если
– четное, а исходная
- точечная последовательность разбита на две
- точечные последовательности, то для вычисления искомого
- точечного ДПФ потребуется
комплексных операций умножения, т.е. вдвое меньше по сравнению с прямым вычислением ДПФ. Здесь множитель
равен числу умножений, необходимых для определения
- точечного ДПФ, а множитель 2 соответствует двум ДПФ, которые должны быть вычислены. Эту операцию можно повторить, вычисляя вместо
- точечного ДПФ две
точечные ДПФ (предполагая, что
– четное) и сокращая тем самым объем вычислений еще в два раза. Выигрыш в два раза является приблизительным, поскольку не учитывается, каким образом из ДПФ меньшего размера образуется искомое
- точечное ДПФ.
Функции Радемахера и их представление
Функции Радемахера составляют неполную систему ортонормированных функций, что ограничивает их применение. Но их широкое использование обусловлено тем, что на их основе можно получить полные функций, например, Хаара и Уолша. Непрерывная Функция Радемахера с индексом m, которая обозначается как rad(m,x), имеет вид последовательности прямоугольных импульсов, содержит
периодов на полуоткрытом интервале [0;1) и принимает значения +1 или –1. Исключением является rad (0,x), которая имеет вид единичного импульса. Функции Радемахера периодические с периодом 1, т.е. rad(m,x) = rad(m,x+1). Кроме того, они периодические и на более коротких интервалах:
,
,
Их можно получить с помощью рекуррентного соотношения:
,
Получить функции Радемахера можно также с помощью следующего соотношения:
Первые четыре функции Радемахера представлены на рис.1.1 а, б
а) б)
Рис. 1.1. Первые четыре непрерывные функции Радемахера:
a) на интервале [0; 1); б) на интервале [-0.5; 0.5);
Пример разложения функции f(x) в базисе функций Радемахера, используя общую формулу (1.2) представлен на рис 1.2.
, (1.2)
где
Рис.1.2. Пример разложения в базисе функций Радемахера.
Дискретные функции Радемахера
Дискретные функции Радемахера являются отсчетами непрерывных функций Радемахера. Каждый отсчет расположен в середине связанного с ним элемента непрерывной функции. Обозначаются дискретные функции Радемахера как Rad(m,x). Для дискретных функций Радемахера удобно использовать матрицу, каждая строка которой является дискретной функцией Радемахера. Например, для третьей диады (m=3) имеем: (для удобства обозначим “+1” как “+”, а “–1” как “–” )
Rad(0,x)
Rad(1,x)
Rad(2,x)
Rad(3,x)
Функции Хаара и их представление
Множество непрерывных функций Хаара
составляет периодическую, ортонормированную и полную систему функций. Широкое распространение функции Хаара получили в вэйвлет-анализа и сжатии изображений. Рекуррентное соотношение, которое дает возможность сформировать непрерывную функцию
, имеет вид:
где
и
, N – общее количество функций.
Первые восемь функций Хаара представлены на рис. 1.3.
Рис.1.3. Первые восемь непрерывных функции Хаара.
Дискретные функции Хаара
По аналогии с дискретными функциями Радемахера дискретные функции Хаара являются отсчетами непрерывных функций Хаара. Каждый отсчет расположен в середине связанного с ним элемента непрерывной функции. Обозначаются дискретные функции Хаара как
.
Построим матрицу дискретных значений функций Хаара для
, в которой каждая строка отвечает соответствующей функции.
Нar(0,0,x)
Har(0,1,x)
Har(1,1,x)
Har(1,2,x)
Har(2,1,x)
Har(2,2,x)
Har(2,3,x)
Har(2,4,x)
При цифровой обработке сигналов, вэйвлет-анализе, сжатии изображений, анализе и синтезе логических функций, часто применяются ненормированные функции Хаара, которые на отдельных участках принимают одно из трех значений +1; 0; –1.
Преобразование Хаара
Любую интегрируемую на интервале
функцию
можно представить рядом Фурье по системе функций Хаара:
, где
(1.3)
с коэффициентами
. (1.4)
Домашнее задание
-
Выражения для непрерывных функций Радемахера
-
Матрица для системы дискретных функций Радемахера при N = 5.
| Rad(0,t) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Rad(1,t) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| Rad(2,t) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| Rad(3,t) | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| Rad(4,t) | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
| Rad(5,t) | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
-
Графики функций от
до
.
-
Выражение для нормированных функций Хаара.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.
, в которой каждая строка отвечает соответствующей функции.
до
.














