ГОСТ Р 12.3.047-98 (558307), страница 9
Текст из файла (страница 9)
i = 123 (2,59 · 105)0,66 / 500 = 1000 Па · с.
ПРИЛОЖЕНИЕ Ж
(рекомендуемое)
МЕТОД РАСЧЕТА ПАРАМЕТРОВ ВОЛНЫ ДАВЛЕНИЯ ПРИ ВЗРЫВЕ РЕЗЕРВУАРА С ПЕРЕГРЕТОЙ ЖИДКОСТЬЮ ИЛИ СЖИЖЕННЫМ ГАЗОМ ПРИ ВОЗДЕЙСТВИИ НА НЕГО ОЧАГА ПОЖАРА
Ж. 1 При попадании замкнутого резервуара со сжиженным газом или жидкостью в очаг пожара может происходить нагрев содержимого резервуара до температуры, существенно превышающей нормальную температуру кипения, с соответствующим повышением давления. За счет нагрева несмоченных стенок сосуда уменьшается предел прочности их материала, в результате чего при определенных условиях оказывается возможным разрыв резервуара с возникновением волн давления и образованием «огненного шара». Расчет параметров «огненного шара» изложен в приложении Д. Порядок расчета параметров волн давления изложен ниже. Разрыв резервуара в очаге пожара с образованием волн давления получил название BLEVE (Boiling Liquid Expanding Vapour Explosion — взрыв расширяющихся паров вскипающей жидкости).
Ж. 2 Возможность возникновения BLEVE для конкретного вещества, хранящегося в замкнутой емкости, определяют следующим образом.
Ж.2.1 Рассчитывают d по формуле
d = Ср (T-Tкип ) / L, (Ж.1)
где Ср— удельная теплоемкость жидкой фазы, Дж/кг;
Т— температура жидкой фазы, соответствующая температуре насыщенного пара при давлении срабатывания предохранительного клапана, К;
Tкип — температура кипения вещества при нормальном давлении. К;
L — удельная теплота испарения при нормальной температуре кипения Ткип, Дж/кг.
Ж.2.2 Если d < 0,35, BLEVE не происходит. При d ³ 0,35 вероятность возникновения данного явления велика.
Ж.3 Параметрами волны давления, образующейся при BLEVE, являются избыточное давление в положительной фазе волны Dp и безразмерный импульс положительной фазы волны i.
Dp, кПа, и i, Па·с, рассчитывают по формулам:
где p0 — атмосферное давление, кПа (допускается принимать равным 101 кПа);
r — расстояние до разрушающегося технологического оборудования, м;
mпр — приведенная масса, кг, рассчитанная по формуле
mпр = Eиэ / Q0. (Ж.4)
где Eиэ — энергия, выделяющаяся при изэнтропическом расширении среды, находящейся в резервуаре, Дж;
q0 — константа, равная 4,52 · 106 Дж/кг.
Ж.4 Eиэ , Дж, рассчитывают по формуле
Eиэ = Сэфф m ( Т - Ткип). (Ж.5)
где m — масса вещества в резервуаре, кг;
Сэфф — константа, равная 500 Дж/(кг·К);
Т — температура вещества в резервуаре в момент его взрыва, К;
Ткип — температура кипения вещества при атмосферном давлении, К.
При наличии в резервуаре предохранительного клапана Т, К, допускается рассчитывать по формуле
где А, В, Са — константы Антуана вещества;
рк — давление срабатывания предохранительного клапана, кПа. Константа А должна соответствовать давлению, выраженному в килопаскалях.
Пример — Расчет параметров ударной волны при BLEVE
Данные для расчета
Рассчитать параметры положительной фазы волны давления на расстоянии 750 м от эпицентра аварии, связанной с развитием BLEVE на железнодорожной цистерне вместимостью 50 м3 с 10 т жидкого пропана. Цистерна имеет предохранительный клапан на давление срабатывания 2,0 МПа.
Расчет Энергию, выделившуюся при расширении среды в резервуаре, рассчитывают по формуле (Ж.5).
Eиэ = Сэфф m ( Т - Ткип),
где m = 4 · 104 кг — масса пропана в цистерне;
Сэфф — константа, равная 500 Дж/кг·К);
Ткип = - 43 + 273 = 230 К — температура кипения пропана при постоянном давлении.
Т, К, находим по формуле (Ж.6)
где рк = 2,000 кПа, А = 5,949, В = 812,648, Са = 247,55.
Отсюда
Получим Eиэ
Eиэ = 4 · 104(332-230)500 = 2,06 · 109 Дж.
Находим приведенную массу mпр, кг, по формуле (Ж.4)
mпр = 2,06 · 109 / (4,52 · 106 ) = 456 кг.
Вычислим Dp и i по формулам (Ж.2) и (Ж.3)
Dр = 101 (0,8 · 4560,33 / 750 + 3 · 4560,66 / 7502 + 5 · 4563 / 750 ) = 0,86 кПа,
i = 123 · 4560,66 / 750 = 9,7 Па · с.
ПРИЛОЖЕНИЕ И
(рекомендуемое)
МЕТОД РАСЧЕТА ПАРАМЕТРОВ ИСПАРЕНИЯ ГОРЮЧИХ НЕНАГРЕТЫХ ЖИДКОСТЕЙ И СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ
И. 1 Интенсивность испарения W, кг/(с·м2), определяют по справочным и экспериментальным данным. Для ненагретых выше температуры окружающей среды ЛВЖ, при отсутствии данных допускается рассчитывать W по формуле1)
_______
1) Формула применима при температуре подстилающей поверхности от минус 50 до плюс 40 °С.
где h — коэффициент, принимаемый по таблице И.1 в зависимости от скорости и температуры воздушного потока над поверхностью испарения;
М — молярная масса, г/моль;
pн — давление насыщенного пара при расчетной температуре жидкости tр, определяемое по справочным данным, кПа.
Таблица И.1
Скорость воздушного потока в помещении, | Значение коэффициента hпри температуре t, °С, воздуха в помещении | ||||
м/с | 10 | 15 | 20 | 30 | 35 |
0,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 |
0,1 | 3,0 | 2,6 | 2,4 | 1,8 | 1,6 |
0,2 | 4,6 | 3,8 | 3,5 | 2,4 | 2,3 |
0,5 | 6,6 | 5,7 | 5,4 | 3,6 | 3,2 |
1,0 | 10,0 | 8,7 | 7,7 | 5,6 | 4,6 |
И.2 Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу паров испарившегося СУГ m СУГ, кг/м2, по формуле1)
_______
1) Формула применима при температуре подстилающей поверхности от минус 50 до плюс 40 °С.
где М — молярная масса СУГ, кг/моль;
Lисп — мольная теплота испарения СУГ при начальной температуре СУГ Тж, Дж/моль;
Т0 — начальная температура материала, на поверхность которого разливается СУГ, соответствующая расчетной температуре tp, К;
Тж — начальная температура СУГ, К;
lтв — коэффициент теплопроводности материала, на поверхность которого разливается СУГ, Вт/(м · К);
а — эффективный коэффициент температуропроводности материала, на поверхность которого разливается СУГ, равный 8,4·10-8 м2/с;
t — текущее время, с, принимаемое равным времени полного испарения СУГ, но не более 3600 с;
число Рейнольдса (n— скорость воздушного потока, м/с; d — характерный размер пролива СУГ, м;
uв — кинематическая вязкость воздуха при расчетной температуре tр, м2/с);
lв — коэффициент теплопроводности воздуха при расчетной температуре tр , Вт/(м · К).
Примеры — Расчет параметров испарения горючих ненагретых жидкостей и сжиженных углеводородных газов
1 Определить массу паров ацетона, поступающих в объем помещения в результате аварийной разгерметизации аппарата.
Данные для расчета
В помещении с площадью пола 50 м2 установлен аппарат с ацетоном максимальным объемом Vaп = 3 м3. Ацетон поступает в аппарат самотеком по трубопроводу диаметром d = 0,05 м с расходом q, равным 2 · 10-3 м3/с. Длина участка напорного трубопровода от емкости до ручной задвижки l1 = 2 м. Длина участка отводящего трубопровода диаметром d = 0,05 м от емкости до ручной задвижки L2 равна 1 м. Скорость воздушного потока и в помещении при работающей общеобменной вентиляции равна 0,2 м/с. Температура воздуха в помещении tр=20 °С. Плотность r ацетона при данной температуре равна 792 кг/м3. Давление насыщенных паров ацетона рa при tр равно 24,54 кПа.
Расчет
Объем ацетона, вышедшего из напорного трубопровода, Vн.т составляет
где t — расчетное время отключения трубопровода, равное 300 с (при ручном отключении).
Объем ацетона, вышедшего из отводящего трубопровода Vот составляет
Объем ацетона, поступившего в помещение
Va = Vап + Vн.т + Vот = 3 + 6,04 ·10-1 + 1,96 · 10-3 = 6,600 м3.
Исходя из того, что 1 л ацетона разливается на 1 м2 площади пола, расчетная площадь испарения Sр = 3600 м2 ацетона превысит площадь пола помещения. Следовательно, за площадь испарения ацетона принимается площадь пола помещения, равная 50 м2.
Интенсивность испарения равна:
Wисп = 10-6 · 3,5 · 24,54 = 0,655 · 10-3 кг/(с · м2).
Масса паров ацетона, образующихся при аварийной разгерметизации аппарата т, кг, будет равна
т = 0,655 · 10-3 · 50 · 3600 = 117,9 кг.
2 Определить массу газообразного этилена, образующегося при испарении пролива сжиженного этилена в условиях аварийной разгерметизации резервуара.