Главная » Просмотр файлов » 1980 - Динамика насосных систем

1980 - Динамика насосных систем (554324), страница 20

Файл №554324 1980 - Динамика насосных систем (1980 - Динамика насосных систем) 20 страница1980 - Динамика насосных систем (554324) страница 202015-11-20СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 20)

сбычвс веобходвмо одевать отыосвтепьвый одваг йаз, поэтому вв одном вэ певцов сверкая задаат. базу кохвбввай, в ыв,другом праввыазт ее равной аула. В пространстве с коордаватвма щ Рп.~,Улм прв 4аксвровавыом у» годогрвф вектора 3 описывает вввтовуа лавам вокруг осв ю. Веззчавы Л», прв которых эта вывесная давая пересекает плоскость 4)-1юд в эадзыыой креезымв услсзаяма точке Уг.~=О, Аю.Ф = «» (4) з есть собственные числа задачи. Величина Л„опредазяет частоту ~( а козКвцвент ыеупругого сопротввлеввя г (-го тоыв колебэыкй зсспедуемой системы. мс' 400 збз ззз 41 йг аз 4! Рас.2. Анахвз пространственной кривой,описываемой вектором б, сспряаен с определенными трудностями;целесообразнее исследовать проекции годографа вектора б на плоскости и-лц и Ф-Л Л.

Эти пооекцви дают нозмокность выделить те особенности, которые взссзт упругоподвешенные массы в спектр частот собственных колебаний оистемн. Рассмотрим неоднородный стержень с тремя упругоподвешензша мессами лр,лс, ~~ . Этого количества масс достаточно для того, чтобы выяснить йекоторые привципиальныа вопросы, связанные с вмяывем демы)шрованвя на спектр частот. Задавая определеыыое дзызбмрованке осцилляторов (одинаковое лля всех трех масс), опредеязем собственные частоты свяванной системы. Исходные данные для Ф' чета во упругим и инерционнмм характеристикам прнведеыы в работе Йу. Кривив Ре я=„/Сы)уел=,61ы)на рве.1 приведены для трех иначе" ний коэффициента неупругого сопротивления ~., равного 0,02; О,!! 0,5.

Ори у' = 0,5 завнсвмость тгл не пересекает ось аг в диапазоне частот О - 280 с . С уменьшением демпфирования в пять раз 4узхция Фл пе~есекает ось ю в нескольких точках (ал !03,? с 109,6 С", й~ = 148,9 С ,а~ 17б,9 С", ат 249,9 С ), КСЗЗ еше в десять раз умеыьшнть демы)мрование, то в области, близкой " 180 сс сувсапззсй ЧаОтоте массЫ ~~,кРивая РР» будет деформирована сы„.ссвдальннм всплеском, который пересечет ось ю дополнительно в ~х точкак, собственнссе чаототы системы несколько изменятся по ссвсчвне («г 102,3 с ; «~~ = 109,7 с ! «~~ - 150,3 с см -153 с 1 !57,7 с ,сРР 173,4 с ; «ф= 233 с ). На всех этих частосвк Ут»»Р (см. рве.1). Иэ раосмотренного графика (см.

рис.1) следует, что в зовах ,срцпальных частот «~~ прк крвтыческом эначенвв козффвцвентв не- )СруГОГО Сснрсткздзкйя Р'» Зазяозысотз РР» ,»ММ Каоаэтоя ОСВ сю, с прв у' <уу» пересекает эту ось в двух точках «(с в «(с,~ .Чем сскьсв демпфврованзе, тем дальше отстоят зты точка друг от друга (нексвмальное расстояние мезду нвык прв сгт Р ).

Результаты расчетов, приведенные в таблице в на рис.2, покамвевт, что степень ы характер вязаная демпфарованвн на спектр сслебаняй связаны с "провсхозденкем" частот. Лемшфврованае окамзается инструментом, помогахщнм "привязке" частот к дкокретной аи контывуельной частям модены. Ссобеыыость частот, связанных с ссцилляторамк, в вх дуализма - в спектре частоты появляются парашс. С ростом демпфвроыанвя такие частоты попарно сблняавтся, а звсмс вырокдаются пры некотором критическом значении Р;».

Прн ,Щ масса осцклкятора колеблется как зестко присоединенная к 'старане. Следует отметать, что спектр частот, првведенный в работе Йу, неполный — определены только по одной вз каздой пары частот, сшсзанных с осцвлляторамк (таблица). Вваымодействые осцыллятора с остальной частью подоив в осисвыом зависит от демпфирования осцзллятора а соотношения аго массы зс в массы связанной системы Ф. В обяасты спектра вблвзз .парцвильной частоты осцвлляторе ю задачу мозно св"сты к двухмассовой мс дела. Аля оыстемы с двумя степеыямк свободы существуют две точки ! рк су, чарва которые проходят все кривые отыосятельных амплатуд, ссзевкснмо от затухания. ослы бы мозно было огредеяыть ых полозеске, задача подбора оптимального демпфирования была бы решена. Полозенне абсцисс точек Р в с7 (т.е.

корав Р н РР) в случае, согда частота осцнлляторе близка частоте свяэанйой свстемы, мозно ' ссределнть по результатам внчыслвтельного эксперммента. Из графиков в в обозначениях реботы Йу следуют простые праблкзенные форзуяы, устанавлквахшые связь: !3! 0,)455 109,5 103,7 109,6 148,9 176, 9 02,8 09',7 50,'3 55,0 57;7 73,4 151,3 188,6 189, 1 239,9 892',1 0,0155 158,1 0,2265 !73,2 253,0 249,9 389,0 389>7 257,1 354,2 285,3 395,9 а) между корыями о и о а оптимальным демпФированаем р бртд Лоог ' Ур ')оооог б) между оптимальным демпфированием и соотноаеыием нвосу ~опт -~н ~ оы ° уолт = ' ~~ .

в) между корнями о и у и соотыоаевием масс е~ у- ~го!/у у -У - 'л~ф ~ Лхо. „Ф -оор р !. Мандельштам Л.И. Лекции по теории колебаний. - М.: Наука, 1972. — 470 с, 2. Сорокин ь'.С. Частотно-ыеэависимое внутреннее тренве в ме- теоиалах и гипотевв Фохта. — Строат. механвка и расчет сооружений 1976, ы 2, с.б8-72.

3. Крютченко В.ЬЧ Н собствеыным крутвльным колебанвям стерж- ней с сосредоточеннымй включениями. - тр.ЛИИТ, 1975, ннп.168, с.106-111. 4. Колесников К.С. Продолыае колебанвя ракеты с жидкостная ракетным двигателем. — М.; Ьашеностроеяие, !9У!. — 260 с. Ь. Крютченко В.И. Зависимость собственнйх частот от демпФи- роввння при резонанснйх колебаниях жидкости в упругой конструк- ции.

— В кн.: Кавитационные автоколебания и динамика гидравличе- ских систем. Киев: Наук.думке, 1977, с.90-93. )ЬК 886.24.08 В.й.ходур й 0 ИйтоКНКН ШНКаЩИИ КРИЗИС4 УКПаоотД4ЧИ В ыестопдее время общепрвыято мнеыае о аалвчва, по крейпей „зре, двух првяцыпвальпо рвазвчыых механавмов кризиса теплоотдпча 1),27. По В.В.)(орощуку ЛУ, зтс к(шкас теплоотдачв первого в второго рода. Крвзво теплоотдачп второго рода в отлачве от ирвзиса мзлоотдачв первого рода, вазыввемого переходом от репвме пузырьмвого квпеывя к пленочному квпепыю, объясыяетоя высыхаывем п(мстенной кадкой пкеыкк. Проведенные кооледозаывя Л-47 показывают, что высыхание празтевпой плевка провсходвт постевеыво к растяыуто ае только во вреиенв (что объясняется тепловой выерцаей стенок тепкообмевквкв а ездкой пленка), во в в зыаченвях опредахяшквх параметров. Твк,прв нркзпсе теплоотдпчв к калвш в вмееваках Й7 раврушеыве прыотеывой адкой плевка покет ывчаааться арв перосодеркаывв я', = Оз5, а ее полное высыхание по всему периметру прв .зо,=/,Криппс теплоотдечв второго рода развавается плавке, без ярко выракеваого скачка температуры не только прв капская калия в змеевиках, но в прв квпеыви зовы.

В раппах всследовзвыях Раззвчалв "быстрый" в "медкеывый" кризис теплоотдачи, пооледнвй - зто кравис теплоотдачв второго рода. Несмотря нз то,что вынзлеа новый мехаывзм, облвдающкй рядом специфических особенностей, пра всследоввывы обоих видов крвзвов применяют единый метод его бшксецвв. Этот метод состоит в том, что постепеапо (ступевькама) повышается тепловая ыагрузка ыа зксперазвнтельыый участок при постоянном зиачеывв входных параметров. Вьюг Хе, при постоянной тепловой нагрузке умевьшают расход вла увеличимют теплосодеряевае нв входе. Кравис теплоотдача йыксвруется прв зерушенвп температурыого реквма греющей степка — визуально, по покраснению греющей стеавв; по разбелеысу мооте„ в плечи которого мзючеыы два участка греющего трубопровода; по презышеввю поквззззй коытрольной термоперы.

Перечвсленыые способы являются в конечном итоге равлачяымв методемв'фвксзцва повышенвя температуры ГРеющей стенка выше некоторого, произвольно выбранного експерямеа, тетором уровня даскрвмпнецвв я7 . На рве.!,а,б првведены твпйчвые даегрвыьм взмененвя основыых зереметров ( у~г — температура стенка; Х вЂ” отнаситекьная теп- Ф Жм г 1ЗЗ г г;в й~ дз дз ПЛ »е к»»и О,Р дв дз де Аг и и и м»» кмю а и га а уас.! . 134 ловая ыагрузка;у= — -.Отвооателъыый тепловой поток) .г - паросодер. %азу канве) прв кризвсе тепдоотдичв первого а второго рода соответственно. Анализ покааывает, что выбор ведичиыы»)я ие впаяет ва зкс.

перимеытальыые зыачеавя я арв краевое тепдоотдзчи первого рода а мокет оказать опредвиящее вдаяыие ВВ я пра кризисе второго РОДВ Текам образом, следует призвать аедоотаточыую корректность обычной методвкв для азучеыия кризиса теядоотйича второго роде, Иополъзовавае такой методика фиксации кризиса вивт привести к веправилъиым выводам. Напрвмер, прв постоянном уровне дискредитация (что обычво бывает в исследованиях) зкспеумментельыые знзчеикя кратвческого парооодериания будут умеиъяеться с ростом локзльвого в месте возывкяовеыия кризиса тепдоъого потока, деке при усаовив,. что парсоодеркаиие качала резрувеывя ввдкой пристеныой пдеыки ие будет зиввсеть от докалъкого зыачеияя тепзоъой ывгрузки. Таам образом, кек следствие веаорректыоств зксперамеытздъной методвка, ф», в л; для криааса тепдоотдачи второго рода становятся "зависимыми" от зпвры респределекая тевдовой нагрузка по длине експеримеытельыого учаотка, проявляетоя "влиявве" Оарооодеркаыия ВХОДВ а Метода Обогрева ыа кризис тепяоотдвчи.

Корректным для обоих видов кризиса тепдоотдачи предстевзяется выдикацкя крВзисв тепясотдечв пс максимуму Функции ВВВисвмссти коэр)мциеыта теплоотдачв от определясщего параметра. При этом зваченае коэр)мциеите теплоотдачи долкыо быть средыеиатеграяьыыы по периметру в времени. цэ пх 0,4 яг От Яя Ф шаман ~е Рвс.2.

Осушение прпотенвой пленка, как припало, провсходат постепенно, сначала периодически появляются перемещающиеся по поверхности сухие пятна. Иэ-эв воэникновевыя и иочевновенвя етах пятеы п их перемещения по поверхноств в греющей стенка воввпкают пуяьоацав температуры стеыки. Опредеяеыие среднеантегрвдьных вначеыай коэффициентов теплоотдачв н втвх условных по обычной методяке, ивмервнаем температуры стенки и пычиспением температуры внутренней поверхности стенка с учетом покальных тепловых потоков, геометрии и теплопронодности стенки, становится исключптельно трудоемкой ведачей. В связи с этим рациональной представлялась внднкацая криппса теплоотдачи по появлению пульсаций температуры стеыка вли раэвертхн температуры по диане нлн периметру канала Л,Ф'.

Одыако, как показывает анализ (рис.2) данных ЙУ, полученнмх при исследонавни кризиса теплоотдвчи к парокалиевым потекем в змеевиках, ети метохя танке недостаточно надекнн и дают несколько ванышенане эначенкя критического паросодерканля, под которым сяедует подравуменать парссодервание, нише которого наступает уменьшение коэффициента твсяоотдачи.

Так, эначение крвтического паросодеркания ф', опрехеааемое по пульоацннм температурн стенки, вначптельыо эависит от веста устаыовки контрольной термопарм; максимальное расхачдение денных достигает 25-збп. значения критического паросодеряавиа, определенные по иеменеыию характера температурной развертки по пеРнметРУ л'~с,окаэались в сРедаем на 2-ЗЬ выше асс, опРеделенннх пс максимуму кривой 4~ /~',г). В связи с втим длн исследования криввса теплоотдвчи второго рода предлагается испспьэовать датчик среднеинтегральыого теплосбмена, предстакэяющэй собой ыикротеплообменник типа "грешная кидкость — кипящая жидкость" дданой З-З калибров, установленннй срееу ээ выходом основного экспернментэльного участка. уменьшение 135 температура греющей яадкостп в мпкротеплообмвивнкв Ф?.

Характеристики

Тип файла
DJVU-файл
Размер
6,07 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее