Глава 10. Выбор конфигурации сетей Ethernet и Fast Ethernet (537695), страница 2
Текст из файла (страница 2)
16 + 11+8 + 8 = 43,
что меньше предельной величины 49. Следовательно, данная конфигурация и по этому показателю будет работоспособна.
Вычисления для обратного направления по этому же пути дадут в данном случае тот же результат, так как начальный сегмент 10BASE-T даст ту же величину, что и начальный сегмент 10BASE2 (16 битовых интервалов), а все промежуточные сегменты опять же останутся промежуточными.
Попробуем теперь с помощью второй модели расчетов оценить, каков может быть максимальный размер сети Ethernet. Теоретически возможный размер сети составляет 6,5 км - в предположении, что вся сеть выполнена на одном сегменте. Однако в реальности это невозможно, ведь предельная длина сегмента не превышает 2 км (для 10BASE-FL). Поэтому присутствие репитеров или концентраторов в сети максимального размера обязательно, а они внесут свой вклад в задержку прохождения сигнала по сети.
Возьмем простейшую конфигурацию сети из двух сегментов 10BASE-FL, соединенных концентратором (рис. 10.2).
Рис. 10.2. Сеть Ethernet максимально возможной длины
Из таблицы 10.1 видно, что при выборе максимальной длины обоих сегментов по 2000 метров (один из них будет начальным, а другой - конечным) суммарная двойная задержка распространения составит:
212,3 + 356,5 = 568,8,
сто значительно больше допустимой величины 512. То есть реальная длина :ети будет даже меньше, чем 4 км. Элементарный расчет показывает, что три двух одинаковых сегментах 10BASE-FL длина каждого из них не дол-
жна превышать 1716 м. Двойная задержка распространения при этом будет вычисляться так (табл. 10.1):
12,3 + 1716 • 0,1+ 156,5 + 1716 • 0,1 = 512.
И общая длина сети будет при этом составлять 3432 м, что значительно меньше теоретически возможной длины в 6500 м. Отметим, что сегменты в конфигурации на рис. 10.2 могут быть и разной длины, но их общая длина не должна превышать все тех же 3432 м. При этом стоит еще учитывать, что мы не включали в расчет задержки трансиверных кабелей. Если используются внешние трансиверы, то необходимо еще уменьшить длину оптоволоконных кабелей.
Попробуем теперь оценить максимально возможный размер сети при использовании только электрического кабеля, например, наиболее популярной сейчас витой пары.
Допустим, мы имеем конфигурацию из пяти сегментов 10BASE-T предельно допустимой длины (100 м), соединенных между собой четырьмя концентраторами. Задержка начального сегмента составит (из табл. 10.1) 26,6 битовых интервалов. Задержка конечного сегмента будет равна 176,3 битовых интервалов. Задержка трех промежуточных сегментов будет 53,3 битовых интервала на каждый сегмент. Итого суммарная задержка равняется:
26,6 + 176,3 + 3 • 53,3 = 362,8, что меньше предельной величины 512.
Мы можем добавить еще два промежуточных 100-метровых сегмента, которые дадут еще 106,6, увеличив количество сегментов до 7, а количество концентраторов до 6. И еще останется запас в 42,6 битовых интервалов. Всего получаем, что сегментов может быть даже 8 при семи концентраторах, а общая длина всех кабелей может достигать 705,3 м. Это значительно превышает ограничения модели 1.
Но подсчитаем, какая величина сокращения межкадрового интервала получается при такой конфигурации. Один начальный сегмент даст 16 битовых интервалов (см. табл. 10.2). Шесть промежуточных сегментов дадут 77 битовых интервалов. В сумме получится 93 битовых интервала, что значительно превышает разрешенные 49 битовых интервалов. Поэтому в данном случае предельная длина сети будет ограничена пятью сегментами, которые сократят межкадровый интервал на величину 16+11 • 3 = 49 битовых интервалов.
В результате сеть максимального размера на витой паре будет состоять из пяти сегментов по 100 м (рис. 10.3), что совпадает с требованиями модели 1. Полная длина сети составит 500 м.
Рис. 10.3. Сеть Ethernet максимального размера на витой паре
Интересно, что пути максимальной длины для расчета круговой задержки и для расчета IPG могут быть различными. Вполне возможна ситуация, когда максимальную задержку прохождения дает один путь в сети, а максимальное сокращение IPG дает другой путь. Например, если один путь состоит из пяти коротких сегментов (электрических и оптоволоконных) и четырех концентраторов, а другой путь имеет всего два оптоволоконных сегмента, но зато с суммарной длиной, близкой к максимально возможной, то первый даст максимальное сокращение IPG, а второй — максимальную задержку прохождения сигнала.
Значит, в идеале необходимо рассчитывать как круговую задержку, так и сокращение IPG для каждого из возможных путей в данной топологии сети. А условие работоспособности сети будет состоять в том, что все задержки всех путей должны быть меньше 512 битовых интервалов, а все величины сокращения IPG для всех путей должны быть меньше 49 битовых интервалов. Правда, неоднозначность пути максимальной длины надо учитывать только в том случае, когда в сети присутствует больше четырех концентраторов, так как четыре концентратора (пять сегментов) в принципе не могут уменьшить APG больше, чем на 49 битовых интервалов при выборе любых возможных сегментов (см. табл. 10.2).
Таким образом, для оценки работоспособности той или иной конфигурации можно использовать обе модели (модель 1 и модель 2), хотя для сложных топологий и предельно длинных сегментов предпочтительнее вторая (числовая) модель, позволяющая количественно оценить временные характеристики сети. В случае же более простых топологий вполне достаточно проверить выполнение элементарных правил первой модели, что не требует никаких расчетов.
10.2. Выбор конфигурации Fast Ethernet
Точно так же, как и в случае Ethernet, для определения работоспособности сети Fast Ethernet стандарт IEEE 802.3 предлагает две модели, называемые Transmission System Model 1 и Transmission System Model 2. При этом первая модель основана на нескольких несложных правилах, а вторая использует систему точных расчетов. Первая модель исходит из того, что все компоненты сети (в частности, кабели) имеют наихудшие из возможных временные характеристики, поэтому она всегда дает результат со значительным запасом. Во второй модели можно использовать реальные временные характеристики кабелей, поэтому ее применение позволяет иногда преодолеть жесткие ограничения модели 1.
10.2.1. Правила модели 1
-
В соответствии с первой моделью, при выборе конфигурации в любом случае надо руководствоваться следующими принципами:
-
Сегменты, выполненные на электрических кабелях (витых парах) не должны быть длиннее 100 м. Это относится к кабелям всех возможных категорий - 3, 4 и 5, к сегментам 100BASE-T4 и 100BASE-TX.
-
Сегменты, выполненные на оптоволоконных кабелях, не должны быть длиннее 412м.
-
Если используются адаптеры с внешними (выносными) трансиверами, то трансиверные кабели (МП) не должны быть длиннее 50 см.
Рис. 10.4. Двухточечное соединение без концентратора
Модель 1 выделяет три возможных конфигурации сети Fast Ethernet:
1. Соединение двух абонентов (узлов) сети напрямую, без репитера или концентратора (рис. 10.4). Абонентами при этом могут выступать не только компьютеры, но и сетевой принтер, порт коммутатора, моста или маршрутизатора. Это соединение называется соединением DTE—DTE или двухточечным.
2. Соединение двух абонентов сети с помощью одного репитер-ного концентратора класса I или класса II (рис. 10.5).
3. Соединение двух абонентов сети с помощью двух репитер-ных концентраторов класса II (рис. 10.6). При этом предполагается, что для связи концентраторов всегда используется электрический кабель длиной не более 5 м. Концентраторы класса II имеют меньшую задержку, поэтому их может быть два. Использование трех концентраторов не допускается в соответствии с моделью 1 ни в коем случае.
Рис. 10.5. Соединение с одним концентратором
Рис. 10.6. Соединение сдвумя концентраторами
В случае первой конфигурации правила модели 1 предельно простые: электрический кабель не должен быть длиннее 100 м, полудуплексный оптоволоконный не должен быть длиннее 412м, полнодуплексный оптоволоконный - 2000 м (при этом задержка сигнала в кабеле уже не имеет значения, так как метод CSMA/CD не работает).
В случае применения конфигурации с одним концентратором надо ограничивать длину кабелей сети в соответствии с таблицей 10.3.
В случае выбора конфигурации с двумя концентраторами надо ограничивать длину кабелей А и В в соответствии с таблицей 10.4 (по умолчанию предполагается, что кабель С имеет длину 5 м).
Табл. 10.3. Максимальная длина кабелей в конфигурации с одним концентратором
Вид кабеля А | Вид кабеля В | Класс концентратора | Макс, длина кабеля А | Макс, длина кабеля В | Макс, размер сети, м |
ТХ, Т4 | ТХ.Т4 | I или II | 100 | 100 | 200 |
тх | FX | I | 100 | 160,8 | 260,8 |
Т4 | FX | I | 100 | 131 | 231 |
FX | FX | I | 136 | 136 | 272 |
ТХ | FX | II | 100 | 208,8 | 308,8 |
Т4 | FX | II | 100 | 204 | 304 |
FX | FX | II | 160 | 160 | 320 |
Табл. 10.4. Максимальная длина кабелей в конфигурации с двумя концентраторами
Вид | Вид | Макс, | Макс, | Макс, |
ТХ,Т4 | ТХ,Т4 | 100 | 100 | 205 |
ТХ | FX | 100 | 116,2 | 221,2 |
Т4 | FX | 100 | 136,3 | 241,3 |
FX | FX | 114 | 114 | 233 |
В обеих конфигурациях с концентраторами при использовании одновременно электрического и оптоволоконного кабелей можно за счет уменьшения длины электрического кабеля увеличить длину оптоволоконного кабеля. Причем уменьшению длины электрического кабеля на 1 м соответствует увеличение длины оптоволоконного кабеля на 1,19 м. Например, уменьшив кабель ТХ на 10 м, можно увеличить кабель FX на 11,9 м, и его предельная длина составит при двух концентраторах 128,1 м. Немного увеличится и предельный размер сети (в нашем примере на 1,9 м).