_Глава 4. Уровни сетевой архитектуры (537689), страница 2
Текст из файла (страница 2)
Все остальные аппаратные средства локальных сетей (кроме адаптеров) имеют вспомогательный характер, и без них часто можно обойтись
Трансиверы, или приемопередатчики (от английского TRANsmitter + reCEIVER), служат для передачи информации между адаптером и кабелем сети или между двумя сегментами (частями) сети. Трансиверы усиливают сигналы, преобразуют их уровни или преобразуют сигналы в другую форму (например, из электрической в световую и обратно). Трансиверами также часто называют встроенные в адаптер приемопередатчики.
Рис. 4.4. Соединение репитером двух сегментов сети
Репитеры, или повторители (repeater), выполняют более простую функцию, чем трансиверы. Они не преобразуют ни уровни сигналов, ни их вид, а только восстанавливают ослабленные сигналы (их амплитуду и форму), приводя их форму к исходному виду. Цель такой ретрансляции сигналов состоит в увеличении длины сети (рис. 4.4). Однако часто репитеры выполняют и некоторые другие функции, например гальваническую развязку соединяемых сегментов. В любом случае, как репитеры, так и трансиверы не производят никакой информационной обработки проходящих через них сигналов.
Концентраторы (hub), как следует из их названия, служат для объединения в единую сеть нескольких сегментов сети. Концентраторы можно разделить на пассивные и активные.
Пассивные, или репитерные, концентраторы представляют собой собранные в едином конструктиве несколько репитеров. Они выполняют те же функции, что и репитеры (рис. 4.5). Преимущество подобных концентраторов по сравнению с отдельными репитерами только в том, что все точки подключения собраны в одном месте, что упрощает реконфигурацию сети, контроль за ней и поиск неисправностей. К тому же все репитеры в данном случае питаются от единого качественного источника питания.
Пассивные концентраторы иногда вмешиваются в обмен, помогая устранять некоторые явные ошибки обмена.
Рис. 4.5. Структура репитерного концентратора
Активные концентраторы выполняют более сложные функции, чем пассивные, например, они могут преобразовывать информацию и протоколы обмена. Правда, это преобразование очень простое. Примером активных концентраторов могут служить коммутирующие или переключающие концентраторы (switching hub), коммутаторы. Они передают из одного сегмента сети в другой сегмент не все пакеты, а только те, которые действительно адресованы компьютерам из другого сегмента. При этом сам пакет коммутатором не принимается. Это приводит к снижению интенсивности обмена в сети вследствие разделения нагрузки, так как каждый сегмент работает только со своими пакетами.
Мосты (bridge), маршрутизаторы (router) и шлюзы (gateway) служат для объединения в единую сеть нескольких разнородных сетей с разными протоколами обмена нижнего уровня, в частности, с разными форматами пакетов, разными методами кодирования, разной скоростью передачи и т.д. В результате их применения сложная и неоднородная сеть, содержащая в себе самые разные сегменты, с точки зрения пользователя выглядит обычной сетью - то есть обеспечивается «прозрачность» сети для протоколов высокого уровня. Естественно, мосты, маршрутизаторы и шлюзы гораздо сложнее и дороже, чем концентраторы, так как от них требуется довольно сложная обработка информации. Реализуются они на базе компьютеров, подключенных к сети с помощью сетевых адаптеров. По сути, это специализированные абоненты (узлы) сети.
Мосты - наиболее простые устройства, служащие для объединения сетей с разными стандартами обмена, например Ethernet и Arcnet, или нескольких сегментов (частей) одной и той же сети, например Ethernet (рис. 4.6). В последнем случае мост служит только для разделения нагрузок сегментов, повышая тем самым производительность сети в целом. В отличие от коммутирующих концентраторов, мосты принимают поступающие пакеты целиком и в случае необходимости производят их простейшую обработку.
Рис. 4.6. Включение моста
Маршрутизаторы выполняют более сложную функцию, чем мосты. Их главная задача - выбор для каждого пакета оптимального маршрута для избегания чрезмерной нагрузки отдельных участков сети и обхода поврежденных участков. Они применяются, как правило, в сложных разветвленных сетях, имеющих несколько маршрутов между отдельными абонентами. Маршрутизаторы не преобразуют протоколы нижних уровней, поэтому они соединяют только сегменты одноименных сетей. Существуют также гибридные маршрутизаторы (brouter), представляющие собой гибрид моста и маршрутизатора. Они выделяют пакеты, которым нужна маршрутизация, и обрабатывают их как маршрутизаторы, а для остальных пакетов служат обычными мостами.
Шлюзы — это устройства для соединения совершенно различных сетей с сильно отличающимися протоколами, например для соединения локальных сетей с большими компьютерами или с глобальными сетями. Это самые дорогие и редко применяемые сетевые устройства.
Если обратиться к модели OSI, то можно считать, что репитеры и репи-терные концентраторы связывают сети или сегменты на первом уровне, мосты - на втором уровне, маршрутизаторы — на третьем уровне, а шлюзы - на более высоких уровнях (на 4, 5, 6 и 7). Соответственно, репитеры выполняют функции (не все, а только некоторые) первого уровня, мосты реализуют функции второго уровня (на первом уровне и частично на втором у них работают сетевые адаптеры), маршрутизаторы - третьего уровня, а шлюзы должны выполнять функции всех уровней.
4.3. Стандартные сетевые протоколы
Протокол - это набор правил и процедур, регулирующих порядок осуществления связи. Естественно, все компьютеры, участвующие в обмене, должны работать по одним и тем же протоколам, чтобы по завершении передачи вся информация восстанавливалась в первоначальном виде.
О протоколах самых нижних уровней (физического и канального), относящихся к аппаратуре, уже упоминалось в предыдущих разделах. В частности, к ним относятся методы кодирования и декодирования, методы управления обменом в сети. Подробнее о некоторых из них будет рассказано в специальных главах книги. А сейчас мы остановимся на особенностях протоколов более высоких уровней, реализуемых программно.
Связь сетевого адаптера с сетевым программным обеспечением осуществляют драйверы сетевых адаптеров. Именно благодаря драйверу компьютер может не знать никаких аппаратурных особенностей адаптера (ни его адресов, ни правил обмена с ним, ни его характеристик). Драйвер унифицирует, делает единообразным общение программных средств с любой платой данного класса. Сетевые драйверы, поставляемые вместе с сетевыми адаптерами, позволяют сетевым программам одинаково работать с платами разных поставщиков и даже с платами разных локальных сетей (Ethernet, Arcnet, Token-Ring и т.д.). Если говорить о стандартной модели OSI, то драйверы, как правило, выполняют часть функций верхнего подуровня (подуровень управления доступом к среде, MAC) канального уровня, хотя иногда они выполняют и часть функций сетевого уровня. Например, драйверы формируют передаваемый пакет в буферной памяти адаптера, читают из этой памяти пришедший по сети пакет, дают команду на передачу и информируют компьютер о приеме пакета.
В любом случае перед приобретением платы адаптера не мешает ознакомиться со списком совместимого оборудования (Hardware Compatibility List, HCL), который публикуют все производители сетевых операционных систем. Выбор там довольно велик (например, для Microsoft Windows NT Server список включает более сотни драйверов сетевых адаптеров). Если в список HCL не входит адаптер какого-то типа, лучше не рисковать и не покупать его.
Рассмотрим теперь кратко протоколы более высоких уровней.
Существует несколько стандартных наборов (или, как их еще называют, стеков) протоколов, получивших сейчас наиболее широкое распространение:
-
набор протоколов ISO/OSI;
-
IBM System Network Architecture (SNA);
-
Digital DECnet;
-
Novell NetWare;
-
Apple AppleTalk;
-
набор протоколов глобальной сети Internet, TCP/IP.
Включение в этот список протоколов глобальной сети вполне объяснимо, ведь модель OSI используется для любой открытой системы, как на базе локальной сети, так и на основе глобальной сети или комбинации локальной и глобальной сетей.
Протоколы перечисленных наборов делятся на три основные типа:
-
прикладные протоколы (выполняющие функции прикладного, представительского и сеансового уровней модели OSI);
-
транспортные протоколы (выполняющие функции транспортного и сеансового уровней OSI);
-
сетевые протоколы (выполняющие функции трех нижних уровней OSI).
Прикладные протоколы обеспечивают взаимодействие приложений и обмен данными между ними. К наиболее популярным из них относятся следующие:
-
FT AM (File Transfer Access and Management) — протокол OSI доступа к файлам; >
-
X.400 - протокол CCITT для международного обмена электронной почтой;
-
Х.500 — протокол CCITT служб файлов и каталогов на нескольких системах;
-
SMTP (Simple Mail Transfer Protocol) — протокол глобальной сети Internet для обмена электронной почтой;
-
FTP (File Transfer Protocol) - протокол глобальной сети Internet для передачи файлов;
-
SNMP (Simple Network Management Protocol) - протокол для мониторинга сети, контроля за работой сетевых компонентов и управления ими;
-
Telnet - протокол глобальной сети Internet для регистрации на удаленных хостах и обработки данных на них;
-
Microsoft SMBs (Server Message Blocks, блоки сообщений сервера) и клиентские оболочки или редиректоры Microsoft;
-
NCP (Novell NetWare Core Protocol) и клиентские оболочки или редиректоры Novell.
Транспортные протоколы поддерживают сеансы связи между компьютерами и гарантируют надежный обмен данными между ними. Наиболее популярны из них следующие:
• TCP (Transmission Control Protocol) - TCP/IP-протокол для гарантированной доставки данных, разбитых на последовательность фрагментов;
-
SPX - часть набора протоколов IPX/SPX (Internetwork Packet Exchange/Sequential Packet Exchange) для данных, разбитых на последовательность фрагментов, предложенный фирмой Novell;
-
NWLink - реализация протокола IPX/SPX от фирмы Microsoft;
-
NetBEUI - (NetBIOS Extended User Interface, расширенный интерфейс NetBIOS) - устанавливает сеансы связи между компьютерами (NetBIOS) и предоставляет верхним уровням транспортные услуги (NetBEUI).
Сетевые протоколы управляют адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу. Наиболее популярны из них следующие:
-
IP (Internet Protocol) - TCP/IP-протокол для передачи данных;
-
IPX (Internetwork Packet Exchange) - протокол фирмы NetWare для передачи и маршрутизации пакетов;
-
NWLink - реализация протокола IPX/SPX фирмой Microsoft;
-
NetBEUI - транспортный протокол, обеспечивающий услуги транспортировки данных для сеансов и приложений NetBIOS.
Все перечисленные протоколы могут быть поставлены в соответствие тем или иным уровням эталонной модели OSI. При этом надо учитывать, что разработчики протоколов не слишком строго придерживаются этих уровней. Например, некоторые протоколы выполняют функции, относящиеся сразу к нескольким уровням модели OSI, а другие - только часть функций одного из уровней. Это приводит к тому, что протоколы разных фирм часто оказываются несовместимы между собой, а также к тому, что протоколы могут быть успешно использованы исключительно в составе своего набора протоколов (стека), который выполняет более или менее законченную группу функций. Как раз это и делает сетевую операционную систему «фирменной», то есть, по сути, несовместимой со стандартной моделью открытой системы OSI.
Рис. 4.7. Соотношение уровней модели OSI и протоколов операционной системы Windows NT
Рис. 4.8. Соотношение уровней модели OSI и протоколов операционной системы NetWare
Рассмотрим теперь подробнее некоторые наиболее распространенные протоколы.
Модель OSI допускает два различных метода взаимодействия в сети:
-
Метод взаимодействия без логического соединения (метод дейтаграмм) - самый старый и простейший метод, в котором каждый пакет рассматривается как самостоятельный объект (рис. 4.10). Пакет передается без установления логического канала, то есть без предварительного обмена служебными пакетами для выяснения готовности приемника, а также без ликвидации логического канала, то есть без пакета подтверждения окончания передачи. Дойдет пакет до приемника или нет - неизвестно (проверка факта получения переносится на более высокие уровни). Метод дейтаграмм предъявляет повышенные требования к аппаратуре (так как приемник всегда должен быть готов к приему пакета). Достоинство метода в том, что передатчик и приемник работают независимо друг от друга, к тому.же пакеты могут буферироваться и передаваться затем все вместе, можно также использовать широковещательную передачу, то есть адресовать пакет всем абонентам одновременно. Недостатки метода — это возможность потери пакетов, а также возможность бесполезной загрузки сети пакетами в случае отсутствия или неготовности приемника.