Главная » Просмотр файлов » СНиП II-25-80 (с изм 1988)

СНиП II-25-80 (с изм 1988) (524626), страница 6

Файл №524626 СНиП II-25-80 (с изм 1988) (СНиП II-25-80) 6 страницаСНиП II-25-80 (с изм 1988) (524626) страница 62013-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

где Sбр – статический момент брутто сдвигаемой части поперечного сечения относительно нейтральной оси;

Iбр – момент инерции брутто поперечного сечения элемента;

Т – расчетная несущая способность одной связи в данном шве;

Мд – изгибающий момент, определяемый по п. 4.17.

Расчетные длины и предельные гибкости элементов деревянных конструкций

4.21. Для определения расчетной длины прямолинейных элементов, загруженных продольными силами по концам, коэффициент m0 следует принимать равным:

при шарнирно-закрепленных концах, а также при шарнирном закреплении в промежуточных точках элемента – 1;

при одном шарнирно-закрепленном и другом защемленном конце – 0,8;

при одном защемленном и другом свободном нагруженном конце – 2,2;

при обоих защемленных концах – 0,65.

В случае распределенной равномерно по длине элемента продольной нагрузки коэффициент m0 следует принимать равным:

при обоих шарнирно-закрепленных концах – 0,73;

при одном защемленном и другом свободном конце – 1,2.

Расчетную длину пересекающихся элементов, соединенных между собой в месте пересечения, следует принимать равной:

при проверке устойчивости в плоскости конструкций – расстоянию от центра узла до точки пересечения элементов;

при проверке устойчивости из плоскости конструкции:

а) в случае пересечения двух сжатых элементов – полной длине элемента;

б) в случае пересечения сжатого элемента с неработающим – величине l1, умноженной на коэффициент m0:

, (37)

где l1, l1, F1 – полная длина, гибкость и площадь поперечного сечения сжатого элемента;

l2, l2, F2 – длина, гибкость и площадь поперечного сечения неработающего элемента.

Величину m0 следует принимать не менее 0,5;

в) в случае пересечения сжатого элемента с растянутым равной по величине силой – наибольшей длине сжатого элемента, измеряемой от центра узла до точки пересечения элементов.

Если пересекающиеся элементы имеют составное сечение, то в формулу (37) следует подставлять соответствующие значения гибкости, определяемые по формуле (11).

4.22. Гибкость элементов и их отдельных ветвей в деревянных конструкциях не должна превышать значений, указанных в табл. 14.

Таблица 14

Наименование элементов конструкций

Предельная гибкость lмакс

1. Сжатые пояса, опорные раскосы и опорные стойки ферм, колонны

120

2. Прочие сжатые элементы ферм и других сквозных конструкций

150

3. Сжатые элементы связей

200

4. Растянутые пояса ферм в вертикальной плоскости

150

5. Прочие растянутые элементы ферм и других сквозных конструкций

200

Для опор воздушных линий электропередачи

6. Основные элементы (стойки, приставки, опорные раскосы)

150

7. Прочие элементы

175

8. Связи

200

Примечание. Для сжатых элементов переменного сечения величины предельной гибкости lмакс умножаются на , где коэффициент kжN принимается по табл. 1 прил. 4.

Особенности расчета клееных элементов из фанеры с древесиной

4.23. Расчет клееных элементов из фанеры с древесиной следует выполнять по методу приведенного поперечного сечения.

4.24. Прочность растянутой фанерной обшивки плит (рис. 3) и панелей следует проверять по формуле

, (38)

где М – расчетный изгибающий момент;

Rф.р – расчетное сопротивление фанеры растяжению;

mф – коэффициент, учитывающий снижение расчетного сопротивления в стыках фанерной обшивки, принимаемый равным при усовом соединении или с двусторонними накладками: mф = 0,6 для фанеры обычной и mф = 0,8 для фанеры бакелизированной. При отсутствии стыков mф = 1;

Wпр – момент сопротивления поперечного сечения, приведенного к фанере, который следует определять в соответствии с указаниями п. 4.25.

4.25. Приведенный момент сопротивления поперечного сечения клееных элементов из фанеры с древесиной следует определять по формуле

, (39)

где yо – расстояние от центра тяжести приведенного сечения до нижней грани обшивки;

Iпр – момент инерции сечения, приведенного к фанере:

, (40)

где Iф – момент инерции поперечного сечения фанерных обшивок;

Iд – момент инерции поперечного сечения деревянных ребер каркаса;

Ед /Еф – отношение модулей упругости древесины и фанеры.

При определении приведенных моментов инерции и приведенных моментов сопротивления расчетную ширину фанерных обшивок следует принимать равной bрас = 0,9b при l ³ 6a и bрас = 0,15 b,

при l < 6а (b – полная ширина сечения плиты, l – пролет плиты, а – расстояние между продольными ребрами по осям).

4.26. Устойчивость сжатой обшивки плит и панелей следует проверять по формуле

, (41)

где при ³ 50;

при > 50

(а – расстояние между ребрами в свету; d – толщина фанеры).

Верхнюю обшивку плит дополнительно следует проверять на местный изгиб от сосредоточенного груза Р = 1 кН (100 кгс) (с коэффициентом перегрузки n = 1,2) как заделанную в местах приклеивания к ребрам пластинку.

4.27. Проверку на скалывание ребер каркаса плит и панелей или обшивки по шву в месте примыкания ее к ребрам следует производить по формуле

, (42)

где Q – расчетная поперечная сила;

Sпр – статический момент сдвигаемой части приведенного сечения относительно нейтральной оси;

Rсп – расчетное сопротивление скалыванию древесины вдоль волокон или фанеры вдоль волокон наружных слоев;

bрас – расчетная ширина сечения, которую следует принимать равной суммарной ширине ребер каркаса.

4.28. Расчет на прочность поясов изгибаемых элементов двутаврового и коробчатого сечений с фанерными стенками (рис. 4) следует производить по формуле (17), принимая Wрас = Wпр, при этом напряжения в растянутом поясе не должны превышать Rр, а в сжатом –jRс (j – коэффициент продольного изгиба из плоскости изгиба).

4.29. При проверке стенки на срез по нейтральной оси в формуле (42) значение Rск принимается равным Rф.ср, а расчетная ширина bрас

bрас = ådст, (43)

где ådст – суммарная толщина стенок.

При проверке скалывания по швам между поясами и стенкой в формуле (42) Rск = Rф.ск, а расчетную ширину сечения следует принимать равной

bрас = nhп, (44)

где hп – высота поясов;

n – число вертикальных швов.

4.30. Прочность стенки в опасном сечении на действие главных растягивающих напряжений в изгибаемых элементах двутаврового и коробчатого сечений следует проверять по формуле

, (45)

где Rф.р.a – расчетное сопротивление фанеры растяжению под углом a определяемое по графику рис. 17 прил. 5;

sст – нормальное напряжение в стенке от изгиба на уровне внутренней кромки поясов;

tст – касательные напряжения в стенке на уровне внутренней кромки поясов;

a – угол, определяемый из зависимости

. (46)

Устойчивость стенки с продольным по отношению к оси элемента расположением волокон наружных слоев следует проверять на действие касательных и нормальных напряжений при условии

, (47)

где hст – высота стенки между внутренними гранями полок;

d – толщина стенки.

Расчет следует производить по формуле

, (48)

где kи и kt – коэффициенты, определяемые по графикам рис. 18, 19 прил. 5;

hрас – расчетная высота стенки, которую следует принимать равной hст при расстоянии между ребрами а ³ hст и равной а при a < hст.

При поперечном по отношению к оси элемента расположении наружных волокон фанерной стенки проверку устойчивости следует производить по формуле (48) на действие только касательных напряжений в тех случаях, когда

. (49)

Б. Расчет элементов деревянных конструкций по предельным состояниям второй группы

4.31. Деформации деревянных конструкций или их отдельных элементов следует определять с учетом сдвига и податливости соединений. Величину деформаций податливого соединения при полном использовании его несущей способности следует принимать по табл. 15, а при неполном – пропорциональной действующему на соединение усилию.

Таблица 15

Вид соединения

Деформация соединения, мм

На лобовых врубках и торец в торец

1,5

На нагелях всех видов

2

В примыканиях поперек волокон

3

В клеевых соединениях

0

4.32. Прогибы элементов зданий и сооружений не должны превышать величин, приведенных в табл. 16

Таблица 16

Элементы конструкций

Предельные прогибы в долях пролета, не более

1. Балки междуэтажных перекрытий

1/250

2. Балки чердачных перекрытий

1/200

3. Покрытия (кроме ендов):

а) прогоны, стропильные ноги

1/200

б) балки консольные

1/150

в) фермы, клееные балки (кроме консольных)

1/300

г) плиты

1/250

д) обрешетки, настилы

1/150

4. Несущие элементы ендов

1/400

5. Панели и элементы фахверка

1/250

Примечания: 1. При наличии штукатурки прогиб элементов перекрытий только от длительной временной нагрузки не должен превышать 1/350 пролета.

2. При наличии строительного подъема предельный прогиб клееных балок допускается увеличивать до 1/200 пролета.

4.33. Прогиб изгибаемых элементов следует определять по моменту инерции поперечного сечения брутто. Для составных сечений момент инерции умножается на коэффициент kж учитывающий сдвиг податливых соединений, приведенный в табл. 13.

Наибольший прогиб шарнирно-опертых и консольных изгибаемых элементов постоянного и переменного сечений f следует определять по формуле

, (50)

где fо – прогиб балки постоянного сечения высотой h без учета деформаций сдвига;

h – наибольшая высота сечения;

l – пролет балки;

k – коэффициент, учитывающий влияние переменности высоты сечения, принимаемый равным 1 для балок постоянного сечения;

с – коэффициент, учитывающий влияние деформаций сдвига от поперечной силы.

Значения коэффициентов k и с для основных расчетных схем балок приведены в табл. 3 прил. 4.

4.34. Прогиб клееных элементов из фанеры с древесиной следует определять, принимая жесткость сечения равной 0,7 ЕIпр. Расчетная ширина обшивок плит и панелей при определении прогиба принимается в соответствии с указаниями п. 4.25.

4.35. Прогиб сжато-изгибаемых шарнирно-опертых симметрично нагруженных элементов и консольных элементов следует определять по формуле

, (51)

где f – прогиб, определяемый по формуле (50);

x – коэффициент, определяемый по формуле (30).

5. Расчет соединений элементов деревянных конструкций

Общие указания

5.1. Действующее на соединение (связь) усилие не должно превышать расчетной несущей способности соединения (связи) Т.

5.2. Расчетную несущую способность соединений, работающих на смятие и скалывание, следует определять по формулам:

а) из условия смятия древесины

Т = RсмaFсм; (52)

б) из условия скалывания древесины

, (53)

где Fсм – расчетная площадь смятия;

Fсм – расчетная площадь скалывания;

Rсмa – расчетное сопротивление древесины смятию под углом к направлению волокон;

– расчетное среднее по площадке скалывания сопротивление древесины скалыванию вдоль волокон, определяемое п. 5.3.

5.3. Среднее по площадке скалывания расчетное сопротивление древесины скалыванию следует определять по формуле

, (54)

где Rск – расчетное сопротивление древесины скалыванию вдоль волокон (при расчете по максимальному напряжению);

lск – расчетная длина плоскости скалывания, принимаемая не более 10 глубин врезки в элемент;

е – плечо сил скалывания, принимаемое равным 0,5h при расчете элементов с несимметричной врезкой в соединениях без зазора между элементами (рис. 5, а) и 0,25h при расчете симметрично загруженных элементов с симметричной врезкой (рис. 5, б);

(h – полная высота поперечного сечения элемента);

b – коэффициент, принимаемый равным 0,25 при расчете соединений, работающих по схеме, показанной на рис. 5, г и b = 0,125 при расчете соединений, работающих по схеме согласно рис. 5, в; если обеспечено обжатие по плоскостям скалывания.

Отношение lск /е должно быть не менее 3.

Рис. 5. Врезки в элементах соединений

а – несимметричная; б – симметричная; в, г – схемы скалывания в соединениях

Клеевые соединения

5.4. При расчете конструкций клеевые соединения следует рассматривать как неподатливые соединения.

5.5. Клеевые соединения следует использовать:

а) для стыкования отдельных слоев на зубчатом соединении (рис. 6, а);

б) для образования сплошного сечения (пакетов) путем сплачивания слоев по высоте и ширине сечения. При этом по ширине пакета швы склеиваемых кромок в соседних слоях следует сдвигать не менее чем на толщину слоя d по отношению друг к другу (рис. 6, б);

в) для стыкования клееных пакетов, сопрягаемых под углом на зубчатый шип по всей высоте сечения (рис. 6, в).

Рис. 6. Клеевые соединения

а – при стыковании отдельных слоев по длине зубчатым шипом, выходящим на пласть; б – при образовании пакетов и сплачивании по пласти и кромке; в – при стыковании клееных элементов под углом зубчатым шипом

Величина внутреннего угла между осями сопрягаемых под углом элементов должна быть не менее 104°.

5.6. Применение усового соединения допускается для фанеры вдоль волокон наружных слоев. Длину усового соединения следует принимать не менее 10 толщин стыкуемых элементов.

5.7. Толщину склеиваемых слоев в элементах, как правило, не следует принимать более 33 мм. В прямолинейных элементах допускается толщина слоев до 42 мм при условии устройства в них продольных прорезей.

5.8. В клееных элементах из фанеры с древесиной не следует применять доски шириной более 100 мм при склеивании их с фанерой и более 150 мм в примыканиях элементов под углом от 30 до 45°.

Соединения на врубках

5.9. Узловые соединения элементов из брусьев и круглого леса на лобовых врубках следует выполнять с одним зубом (рис. 7).

Рис. 7. Лобовая врубка с одним зубом

Рабочая плоскость смятия во врубках при соединении элементов, не испытывающих поперечного изгиба, должна располагаться перпендикулярно оси примыкающего сжатого элемента. Если примыкающий элемент помимо сжатия испытывает поперечный изгиб, рабочую плоскость смятия во врубках следует располагать перпендикулярно равнодействующей осевой и поперечной сил.

Элементы, соединяемые на лобовых врубках, должны быть стянуты болтами.

5.10. Лобовые врубки следует рассчитывать на скалывание согласно указаниям пп. 5.2 и 5.3, принимая расчетное сопротивление скалыванию по п. 5 табл. 3.

5.11. Длину плоскости скалывания лобовых врубок следует принимать не менее 1,5h, где h – полная высота сечения скалываемого элемента.

Глубину врубки следует принимать не более 1/4 h в промежуточных узлах сквозных конструкций и не более 1/3 h в остальных случаях, при этом глубина врубок h1 в брусьях должна быть не менее 2 см, а в круглых лесоматериалах – не менее 3 см.

5.12. Расчет на смятие лобовых врубок с одним зубом следует производить по плоскости смятия (см. рис. 7). Угол смятия древесины a следует принимать равным углу между направлениями сминающего усилия и волокон сминаемого элемента.

Расчетное сопротивление древесины смятию под углом к волокнам для лобовых врубок следует определять по формуле (2) примеч. 2 к табл. 3 независимо от размеров площади смятия.

Соединения на цилиндрических нагелях

5.13. Расчетную несущую способность цилиндрического нагеля на один шов сплачивания в соединениях элементов из сосны и ели (рис. 8) при направлении усилий, передаваемых нагелями вдоль волокон и гвоздями под любым углом, следует определять по табл. 17. В необходимых случаях расчетную несущую способность цилиндрического нагеля, определенную по табл. 17, следует устанавливать с учетом указаний п. 5.15.

Таблица 17

Расчетная несущая способность Т на один шов сплачивания (условный срез), кН (кгс)

Схемы

соединений

Напряженное состояние

соединения

гвоздя, стально­го, алюмини­е­вого, стеклоплас­тикового нагеля

дубового нагеля

1. Симметричные соединения (рис. 8,а)

а) смятие в средних элементах

0,5cd

(50cd)

0,3cd

(30cd)

б) смятие в крайних элементах

0,8cd

(80cd)

0,5cd

(50cd)

2. Несимметричные соединения (рис. 8,б)

а) смятие во всех элементах равной толщины, а также в более толстых элементах односрезных соединений

0,35cd

(35cd)

0,2cd

(20cd)

б) смятие в более толстых средних элементах двухсрезных соединений при а £ 0,5с

0,25cd

(25cd)

0,14cd

(14cd)

в) смятие в более тонких крайних элементах при а £ 0,35с

0,8ad

(80ad)

0,5ad

(50ad)

г) смятие в более тонких элементах односрезных соединений и в крайних элементах при c > a > 0,35c

kнad

kнad

3. Симметричные и несимметричные соединения

а) изгиб гвоздя

2,5d2 + 0,01a2

(250d2 + a2), но не более 4d2 (400d2)

б) изгиб нагеля из стали С38/23

1,8d2 + 0,02a2

(180d2 + 2a2), но не более 2,5d2 (250d2)

в) изгиб нагеля из алюминиевого сплава Д16-Т

1,6d2 + 0,02a2

(160d2 + 2a2), но не более 2,2d2 (220d2)

г) изгиб нагеля из стеклопластика

АГ-4С

1,45d2 + 0,02a2

(145d2 + 2a2), но не более 1,8d2 (180d2)

д) изгиб нагеля из древеснослоистого пластика ДСПБ

0,8d2 + 0,02a2

(80d2 + 2a2),

но не более d2 (100d2)

е) изгиб дубового нагеля

0,45d2 + 0,02a2 (45d2 + 2a2), но не более 0,65d2 (65d2)

Примечания: 1. В таблице: с – толщина средних элементов, а также равных по толщине или более толстых элементов односрезных соединений, а – толщина крайних элементов, а также более тонких элементов односрезных соединений; d – диаметр нагеля; все размеры в см.

2. Расчетную несущую способность нагеля в двухсрезных несимметричных соединениях при неодинаковой толщине элементов следует определять с учетом следующего:

а) расчетную несущую способность нагеля из условия смятия в среднем элементе толщиной с при промежуточных значениях а между с и 0,5с следует определять интерполяцией между значениями по пп. 2а и 2б таблицы;

б) при толщине крайних элементов а > с расчетную несущую способность нагеля следует определять из условия смятия в крайних элементах по п. 2а таблицы с заменой с на а;

Характеристики

Тип файла
Документ
Размер
999 Kb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов стандарта

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее