Thompson - Computing for Scientists and Engineers (523188), страница 80
Текст из файла (страница 80)
J., 322, 376wedge function:Fourier integral transform of, 384Fourier series for, 343-345weights in least-squares fitting. 185for straight-line least squares, 190mechanical analogy, 190444INDEXWhipp, B. J., 235, 255White, H. E., 269, 313Whitney, C. A., 218, 219Wiener-Khinchin theorem, 320Wilbraham, H., 350, 376Wilbraham-Gibbs overshoot, 349-360at function discontinuity, 353-358for sawtooth, 358for square pulse, 356history of, 349not from slope discontinuities, 35 1numerical methods for, 359-360window function:convolution with Lorentzian, 394Fourier series for, 345-347Wolfram, S., 5, 10, 11, 15, 20, 49,52, 98, 151, 224, 255, 421, 422Woltring, H.
J., 218, 219women sprinters, 234-235improvements in sprints, 235world-record sprints, 234Woods-Saxon function, see logistic growthworking function:analytical derivatives, 101analytical integral, 101program for, 106properties, 100-102spline fit, 155workstations:and C language, 7using, 421world-record sprints, 225-235and speed limits, 235average speed in, 228Carl Lewis, 233differential equation for, 226distance versus time, 227effect of track turn, 233normalization factor, 229program for analyzing, 229times for men and women, 226wraparound in convolution, 398Wren, Christopher, 279Wylie, C. R., 4, 15, 228, 255Yakutsk, Siberia, 182Yee, H.
C., 239, 255York, D., 191, 219Zeiterman, D., 241zeta function, 353Zill, D. G., 247, 255, 312, 313.