Kleinert - Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets - ed.4 - 2006 (523104), страница 68
Текст из файла (страница 68)
Jackiw, Phys. Rev. D 9 , 1687 (1976)H. Kleinert, PATH INTEGRALS3.23 Path Integral Calculation of Effective Action by Loop Expansion315The functional W2 [xcl ] is defined by the path integral over the fluctuationse(i/h̄)h̄2W2 [xcl ]=RDx exp h̄iRno1δxD[xcl ]δx + R[xcl , δx]2onDδx exp h̄i 12 δxAxx [xcl ]δx,(3.715)where D[xcl ] ≡ Axx [xcl ] is the second functional derivative of the action at x =xcl . The subscripts x of Axx denote functional differentiation.
For the anharmonicoscillator:gD[xcl ] ≡ Axx [xcl ] = −∂t2 − ω 2 − x2cl .(3.716)2The functional R collects all unharmonic terms:R [xcl , δx] = A [xcl + δx] − A[xcl ] −Zdt Ax [xcl ](t)δx(t)1−2Zdtdt0 δx(t)Axx [xcl ](t, t0 )δx(t0 ).(3.717)In condensed functional vector notation, we shall write expressions like the last termasZ11(3.718)dtdt0 δx(t)Axx [xcl ](t, t0 )δx(t0 ) → δxAxx [xcl ]δx.22By construction, R is at least cubic in δx. The path integral (3.715) may thus beconsidered as the generating functional Z fl of a fluctuating variable δx(τ ) with apropagatorG[xcl ] = ih̄{Axx [xcl ]}−1 ≡ ih̄D −1 [xcl ],and an interaction R[xcl , ẋ], both depending on j via xcl .
We know from the previoussections, and will immediately see this explicitly, that h̄2 W2 [xcl ] is of order h̄2 . Letus write the full generating functional W [j] in the formW [j] = A[xcl ] + xcl j + h̄∆1 [xcl ],(3.719)where the last term collects one- and two-loop corrections (in higher-order calculations, of course, also higher loops):i∆1 [xcl ] = Tr log D[xcl ] + h̄W2 [xcl ].2(3.720)From (3.719) we find the vacuum expectation value X = hxi as the functionalderivativeX=δxδW [j]= xcl + h̄∆1xcl [xcl ] cl ,δjδj(3.721)implying the correction term X1 :X1 = ∆1xcl [xcl ]δxcl.δj(3.722)3163 External Sources, Correlations, and Perturbation TheoryThe only explicit dependence of W [j] on j comes from the second term in (3.719).In all others, the j-dependence is due to xcl [j].
We may use this fact to express j asa function of xcl . For this we consider W [j] for a moment as a functional of xcl :W [xcl ] = A[xcl ] + xcl j[xcl ] + h̄∆1 [xcl ].(3.723)The combination W [xcl ] − jX gives us the effective action Γ[X] [recall (3.662)]. Wetherefore express xcl in (3.723) as X − h̄X1 − O(h̄2 ) from (3.698), and re-expandeverything around X rather than xcl , yields1Γ[X] = A[X] − h̄AX [X]X1 − h̄X1 j[X] + h̄2 X1 jX [X]X1 + h̄2 X1 D[X]X12+ h̄∆1 [X] − h̄2 ∆1X [X]X1 + O(h̄3 ).(3.724)Since the action is extremal at xcl , we haveAX [X − h̄X1 ] = −j[X] + O(h̄2 ),(3.725)and thusAX [X] = −j[X] + h̄AXX [X]X1 + O(h̄2 ) = −j[X] + h̄D[X]X1 + O(h̄2 ),(3.726)and therefore:1Γ[X] = A[X] + h̄∆1 [X] + h̄2 − X1 D[X]X1 + X1 jX [X]X1 − ∆1X X1 .
(3.727)2From (3.722) we see thatδjX = ∆1xcl [xcl ].δxcl 1(3.728)Replacing xcl → X with an error of order h̄, this impliesδjX = ∆1X [X] + O(h̄).δX(3.729)Inserting this into (3.727), the last two terms in the curly brackets cancel, and theonly remaining h̄2 -terms are−h̄2X D[X]X1 + h̄2 W2 [X] + O(h̄3 ).2 1(3.730)From the classical equation of motion (3.668) one has a further equation for δj/δxcl :δj= −Axx [xcl ] = −D[xcl ].δxcl(3.731)Inserting this into (3.722) and replacing again xcl → X, we findX1 = −D −1 [X]∆1X [X] + O(h̄).(3.732)H. Kleinert, PATH INTEGRALS3.23 Path Integral Calculation of Effective Action by Loop Expansion317We now express ∆1X [X] via (3.720). This yields!iδ∆1X [X] = Tr D −1 [X]D[X] + h̄W2X [X] + O(h̄2 ).2δX(3.733)Inserting this into (3.732) and further into (3.727), we find for the effective actionthe expansion up to the order h̄2 :Γ[X] = A[X] + h̄Γ1 [X] + h̄2 Γ2 [X]h̄= A[X] + i Tr log D[X] + h̄2 W2 [X]2!!2h̄ 1δ1δ−1−1−1+Tr D [X]D[X] D [X] Tr D [X]D[X] .
(3.734)2 2δX2δXWe now calculate W2 [X] to lowest order in h̄. The remainder R[X; x] in (3.717) hasthe expansionR[X; δx] =11AXXX [X]δx δx δx + AXXXX [X]δx δx δx δx + . . . . (3.735)3!4!Being interested only in the h̄2 -corrections, we have simply replaced xcl by X. Inorder to obtain W2 [X], we have to calculate all connected vacuum diagrams for theinteraction terms in R[X; δx] with a δx(t)-propagatorG[X] = ih̄{AXX [X]}−1 ≡ ih̄D −1 [X].Since every contraction brings in a factor h̄, we can truncate the expansion (3.735)after δx4 .
Thus, the only contributions to ih̄W2 [X] come from the connected vacuum diagrams18+ 121+ 18,(3.736)where a line stands now for G[X], a four-vertex for(i/h̄)AXXXX [X] = (i/h̄)DXX [X],(3.737)(i/h̄)AXXX [X] = (i/h̄)DX [X].(3.738)and a three-vertex forOnly the first two diagrams are one-particle irreducible. As a pleasant result, thethird diagram which is one-particle reducible cancels with the last term in (3.734).To see this we write that term more explicitly ash̄2 −1DAD −1 AD −1 ,8 X1 X2 X1 X2 X3 X3 X30 X30 X10 X20 X10 X20(3.739)3183 External Sources, Correlations, and Perturbation Theorywhich corresponds precisely to the third diagram in Γ2 [X], except for an oppositesign.
Note that the diagram has a multiplicity 9.Thus, at the end, only the one-particle irreducible vacuum diagrams contributeto the h̄2 -correction to Γ[X]:3 −11−1−1−1−1iΓ2 [X] = i D12AX1 X2 X3 X4 D34+ i 2 AX1 X2 X3 DXDXDXAX1 X2 X3 .1 X102 X203 X304!4!(3.740)Their diagrammatic 2representation isih̄ Γ2 [X] = 18h̄+ 121(3.741)The one-particle irreducible nature of the diagrams is found to all orders in h̄.3.23.5Finite-Temperature Two-Loop Effective ActionAt finite temperature, and in D dimensions, the expansion proceeds with the imaginary-timeversions of the X-dependent Green functions (3.687) and (3.688)GL (τ1 , τ2 ) =cosh(ωL |τ1 − τ2 | − h̄βωL /2)h̄,2M ωLsinh(h̄βωL /2)(3.742)GT (τ1 , τ2 ) =h̄cosh(ωT |τ1 − τ2 | − h̄βωT /2),2M ωTsinh(h̄βωT /2)(3.743)andwhere we have omitted the argument X in√ ωL (X) and ωT (X).
Treating here the general rotationallysymmetric potential V (x) = v(x), x = x2 , the two frequencies are1 001 0v (X), ωT2 (X) ≡v (X).(3.744)MMXWe also decompose the vertex functions into longitudinal and transverse parts. The three-pointvertex is a sum 00∂ 3 v(X)v (X) v 0 (X)L 000T,(3.745)= Pijkv (X) + Pijk−∂Xi ∂Xj ∂XkXX22ωL(X) ≡with the symmetric tensorsXi Xj XkX3The four-point vertex readsLPijk≡andTPijk≡ δijXkXjXiL+ δik+ δjk− 3Pijk.XXX 00000∂ 4 v(X)v (X) v 0 (X)LT v (X)S,= Pijklv (4) (X) + Pijkl+ Pijkl−∂Xi ∂Xj ∂Xk ∂XlXX2X3(3.746)(3.747)with the symmetric tensorsLPijkl=Xi Xj Xk Xl,X4TPijkl= δij(3.748)Xk XlXj XlXj XkXi XlXi XkXi XkL+δik+δil+δjk+δjl+δkl−6Pijkl,22222XXXXXX2SLTPijkl= δij δkl + δik δjl + δil δjk − 3Pijkl− 3Pijkl.(3.749)(3.750)H. Kleinert, PATH INTEGRALS3.23 Path Integral Calculation of Effective Action by Loop Expansion319The tensors obey the following relations:Xi LLP = Pjk,X ijkXi TTP = Pjk,X ijkXl TXj TXk TTPjl +Pjk , PijL Pikl=P , P T P L = 0,XXX kl ij iklLTTTL TTL TT= Pijkl, PhijPhkl= PijT Pkl+ PikPjl + PilL Pjk+ PjkPil + PjlL Pik,L TTLT LL LLT TL= Pij Pkl , Phij Phkl = Pij Pkl , Pij Pijkl = Pkl , Pij Pijkl = (D−1)Pkl,LLTPijL Pikl= Pjkl, PijT Pikl=LLPhijPhklLTPhijPhklTTPijL Pijkl= Pkl,LPijT Pijkl= 0,STSTLPijL Pijkl= −2Pkl, PijT Pijkl= (D + 1)Pkl− 2(D − 1)Pkl.(3.751)(3.752)(3.753)(3.754)(3.755)(3.756)Instead of the effective action, the diagrammatic expansion (3.741) yields now the free energy(i/h̄)Γ[X] → −βF (X).(3.757)Using the above formulas we obtain immediately the mean field contribution to the free energyZ h̄β M 2−βFMF = −dτẊ + v(X) ,(3.758)20and the one-loop contribution [from the trace-log term in Eq.
(3.734)]:−βF1−loop = − log [2 sinh(h̄βωL /2)] − (D − 1) log [2 sinh(h̄βωT /2)] .The first of the two-loop diagrams in (3.741) yields the contribution to the free energy 00v (X) v 0 (X)2(4)22−β∆1 F2−loop = −β GL (τ, τ )v (X) + (D − 1) GT (τ, τ )−X2X3 000000v (X) 2v (X) 2v (X)+ 2(D−1)GL (τ, τ )GT (τ, τ ).−+XX2X3From the second diagram we obtain the contributionZ h̄βZ h̄β12−β∆2 F2−loop = 2dτ1dτ2 GL3 (τ1 , τ2 ) [v 000 (X)]h̄ 002 00v (X) v 0 (X)−.+ 3(D − 1)GL (τ1 , τ2 )GT2 (τ1 , τ2 )XX2(3.759)(3.760)(3.761)The explicit evaluation yieldsh̄2 β=−(2M )212(4)(X)(3.762)2 coth (h̄βωL /2)vωLD2 − 1v 00 (X) v 0 (X)2+coth(h̄βω/2)−TωT2X2X3 000v (X) 2v 00 (X) 2v 0 (X)2(D − 1)coth(h̄βωL /2) coth(h̄βωT /2)−++.ωL ωTXX2X3−β∆1 F2−loopand112h̄2 β0002 1[v (X)]+−β∆2 F2−loop =ωL (2M ωL )33 sinh2 (h̄βωL /2) 00216h̄2 β(D − 1) 1v (X) v 0 (X)−(3.763)+2ωT + ωL 2M ωL (2M ωT )2XX2ωT1ωTsinh[h̄β(2ωT −ωL)/2]× coth2 (h̄βωT /2) ++.ωL sinh2 (h̄βωT /2) 2ωT −ωL sinh(h̄βωL /2) sinh2 (h̄βωT /2)3203 External Sources, Correlations, and Perturbation TheoryIn the limit of zero temperature, the effective potential in the free energy becomes(h̄ωL1 (4)h̄ωTh̄2Veff (X) = v(X) ++ (D − 1)+(X)2vT →0228(2M )2 ωL)D2 − 1 v 00 (X) v 0 (X)2(D − 1) v 000 (X) 2v 00 (X) 2v 0 (X)+−−++ωT2X2X3ωL ωTXX2X3()2 00h̄213(D − 1) 1v (X) v 0 (X)0002−+ O(h̄3 ).[v(X)]+−46(2M )3 3ωL2ωT + ωL ωL ωT2XX2(3.764)For the one-dimensional potentialV (x) =M 2 2 g3 3 g4 4ω x + x + x ,23!4!(3.765)the effective potential becomes, up to two loops,Veff (X) =1g41M 2 2ω X +g3 X 3 +g4 X 4 + log (2 sinh h̄βω/2)+h̄22β8(2M ω)2 tanh2 (h̄βω/2)1h̄2 (g3 + g4 X)2 1+ O(h̄3 ) ,(3.766)+−6ω (2M ω)33 sinh2 (h̄βω/2)whose T → 0 limit isVeff (X)=T →0M 2 2 g3 3 g4 4 h̄ωg4ω X + X + X ++ h̄223!4!28(2M ω)2−h̄2 (g3 + g4 X)2+ O(h̄3 ) .18ω (2M ω)3(3.767)If the potential is a polynomial in X, the effective potential at zero temperature can be solvedmore efficiently than here and to much higher loop orders with the help of recursion relations.