Van Eyk, Dunn - Proteomic and Genomic Analysis of Cardiovascular Disease - 2003 (522919), страница 59
Текст из файла (страница 59)
Proc. Natl.Acad. Sci. USA. 1993, 90, 5011–5015.Mann, M., Hojrup, P., Roepstorff, P.Use of mass spectrometric molecularweight information to identify proteinsin sequence databases. Biol. Mass Spectrom. 1993, 22, 338–345.Pappin, D. J. C., Hojrup, P., Bleasby,A. J. Rapid identification of proteins bypeptide-mass fingerprinting. Curr. Biol.1993, 3, 327–332.Yates, J. R., Speicher, S., Griffin, P. R.,Hunkapiller, T.
Peptide mass maps: ahighly informative approach to proteinidentification. Anal. Biochem. 1993, 214,397–408.Shevchenko, A., Wilm, M., Vorm, O.,Mann, M. Mass spectrometric sequencingof proteins silver-stained polyacrylamidegels. Anal. Chem. 1996, 68, 850–858.McCormack, A. L., Schieltz, D. M.,Goode, B., Yang, S., et al. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal.Chem. 1997, 69, 767–776.Lee, C.
H., McComb, M. E., Bromirski,M., Jilkine, A., Ens, W., et al. On-membrane digestion of beta-casein for determination of phosphorylation sites by matrix-assisted laser desorption/ionizationquadrupole/time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.2001, 15, 191–202.Humphery-Smith, I., Ward, M. A.
Proteome research: methods for proteincharacterization, S. P. Hunt, F. J. Livesey(Eds.), Oxford University Press, NewYork 2000, pp. 217–218.Roepstorff, P., Fohlman, J. Proposalfor a common nomenclature for sequence ions in mass spectra of peptides.J. Biomed. Mass Spectrom. 1984, 11, 601.Bonner, R., Shushan, B. The characterization of proteins and peptides by automated methods. Rapid Commun. MassSpectrom. 1995, 9, 1067–1076.Davies, M. T., Lee, T. D. Rapid proteinidentification using a microscale electro-20921012 Mass Spectrometry27282930313233343536spray LC/MS system on an ion trap massspectrometer.
J. Am. Soc. Mass Spectrom.1998, 9, 194–201.Figeys, D., Ducret, A., Yates III, J. R.,Abersold R. Protein identification by solid phase microextraction-capillary zoneelectrophoresis-microelectrospray-tandemmass spectrometry. Nat. Biotechnol. 1996,14, 1579–1583.Link, A.
J., Eng, J., Schieltz, D. M.,Carmack, E., et al. Direct analysis of protein complexes using mass spectrometry.Nat. Biotechnol. 1999, 17, 676–682.Wolters, D. A., Washburn, M. P., Yates,J. R. An automated multidimensionalprotein identification technology for shotgun proteomics. Anal. Chem. 2001, 73,5683–5690.Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., et al. Quantitative analysis ofcomplex protein mixtures using isotopecoded affinity tags.
Nat. Biotechnol. 1999,17, 994–999.Cagney, G., Emili, A. De novo peptidesequencing and quantitative profiling ofcomplex protein mixtures using masscoded abundance tagging. Nat. Biotechnol. 2002, 20, 163–170.Perkins, D. N., Pappin, D. J., Creasy,D.
M., Cottrell, J. S. Probability-basedprotein identification by searching sequence databases using mass spectrometrydata. Electrophoresis. 1999, 18, 3551–3567.Enj, J. K., McCormack, A. L., Yates, J. R.An approach to correlate tandem massspectral data of peptides with amino acidsequences in protein databases. J. Am.Soc. Mass Spectrom. 1994, 5, 976–989.Clauser, K.
R., Baker, P. R., Burlingame, A. L. Role of Accurate Mass Measurement (± 10 ppm) in Protein Identification Strategies Employing MS or MS/MS and Database Searching. Anal. Chem.1999, 71, 2871–2882.Young, P., Kappe, E., Swainston, N.,Yao, T., et al. Search algorithm implemented in a client server architecture.15th International Mass SpectrometryConference, Barcelona, Spain 2000.Choudhary, J. S., Blackstock, W. P.,Creasy, D. M., Cottrell, J. S. Interrogating the human genome using uninter-37383940414243444546preted mass spectrometry data. Proteomics. 2001,1, 651–667.Kuster, B., Mortensen, P., Andersen,J.
S., Mann, M. Mass spectrometry allowsdirect identification of proteins in largegenomes. Proteomics. 2001, 1, 641–650.Claverie, J. M. Gene number. What ifthere are only 30,000 human genes?Science. 2001, 291, 1255–1257.Larsen, M. R., Sorensen, G. L., Fey, S. J.,Larsen, P. M., Roepstorff, P. Phosphoproteomics: evaluation of the use of enzymatic de-phosphorylation and differential mass spectrometric peptide massmapping for site specific phosphorylationassignment in proteins separated by gelelectrophoresis.
Proteomics. 2001, 1, 223–238.Mills, P. B., Mills, K., Johnson, A. W.,Clayton, P. T., Winchester, B. G. Analysis by matrix assisted laser desorption/ionisation-time of flight mass spectrometryof the post-translational modifications ofalpha 1-antitrypsin isoforms separated bytwo-dimensional polyacrylamide gel electrophoresis. Proteomics. 2001, 1, 778–786.Harvey, D. J.
Identification of proteinbound carbohydrates by mass spectrometry. Proteomics. 2001, 1, 311–328.Wilm, M., Neubauer, G., Mann, M. Parent ion scans of unseparated peptidemixtures. Anal. Chem. 1996, 68, 527–533.Carr, S. A., Huddleston, M. J., Bean,M. F. Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci.1993, 2, 183–196.Neubauer, G., Mann, M. Mapping ofphosphorylation sites of gel-isolated proteins by nanoelectrospray tandem massspectrometry: potentials and limitations.Anal. Chem.
1999, 71, 235–242.Carr, S. A., Huddleston, M. J., Annan,R. S. Selective detection and sequencingof phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem.1996, 239, 180–192.Betts, J. C., Blackstock, W. P., Ward,M. A., Anderton, B. A. Identification ofphosphorylation sites on neurofilamentproteins by nanoelectrospray mass spec-12.4 Referencestrometry. J. Biol. Chem.
1997, 272(20),12922–12927.47 Bell, A. W., Ward, M. A., Blackstock,W. P., Freeman, H. N. M. et al. Proteomics characterization of abundant Golgimembrane proteins. J. Biol. Chem. 2001,276, 5152–5165.48 Anderson, J. S., Lyon, C. E., Fox, A. H.,Leung A. K,, et al. Directed ProteomicAnalysis of the Human Nucleolus.
Curr.Biol. 2002, 12(1), 1–11.49 Eaton, P., Byers, H. L., Leeds, N., Ward,M. A., Shattock, M. J. Detection, quantitation, purification, and identification ofcardiac proteins S-thiolated during ischemia and reperfusion. J. Biol. Chem.2002, Jan 2 [epub ahead of print].50Husi, H., Ward, M. A., Choudhary,J. S., Blackstock, W. P., Grant, G. N.Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat.Neurosci. 2000, 3(7), 661–669.51 Rigaut, G., Shevchenko, A., Rutz, B.,Wilm, M., et al. A generic protein purification method for protein complex characterization and proteome exploration.Nature.
1999, 17, 1030–1032.52 Gatlin, C. L., Eng J. K., Cross, S. T., Detter, J. C., Yates, J. R. Automated identification of amino acid sequence variationsin proteins by HPLC/microspray tandemmass spectrometry. Anal. Chem. 2000, 7,757–763.21121313Differential Expression Proteomic Analysis Using Isotope CodedAffinity TagsMichael E. Wright and Ruedi Aebersold13.1IntroductionOne of the major goals of biological research is to define all the elements of a biological system and to determine how their collective activities and interactions carry out complex biological functions.
It is expected that defining the activity ofeach individual element and its relationship to other elements in that system willlead to a more integrated and global understanding of how those elements function together in a biological network. The genomics field has provided examplesthat support this concept through the application of cDNA microarray technology,e.g.
[1, 2]. Large-scale gene expression profiling (via cDNA microarray technology)has revealed that co-regulated genes tend to cluster into distinct functional categories, facilitating the classification of uncharacterized genes to discrete functionsand specific pathways [1, 3–6]. This technology has also revealed that distinct cellular phenotypes share similar mRNA expression profiles, again suggesting thatuncovering gene expression patterns will lead to a better understanding of thegenes that give rise or contribute to the maintenance of a particular cellular state(e.g. [7–16].
However, the underlying premise behind the application of DNA microarray technology is that changes in mRNA abundance directly translate tochanges in the abundance of the proteins encoded by those mRNAs. Proteins arethe molecular effectors that carry out essentially all biochemical activities of thecell. Therefore, mRNA profiling represent an indirect assay from which proteinabundance and activity are inferred. Proteomics is the discipline that attempts tosystematically and quantitatively analyze the proteins expressed in a cell or tissueand to therefore provide a more direct indication of the functional state of thecell.
Mass spectrometry (MS) is a critical component of essentially any currentproteome analysis technology and has had a significant impact on the growth anddevelopment of the proteomic field. In particular, protein identification and quantification are most commonly achieved by the application of one of a variety ofMS technologies [17]. In this chapter we will highlight new developments in protein reactive chemistries (e.g. isotope coded affinity tags ICATTM reagents) thatwhen used in combined with MS allow for the global identification and quantification of the proteins present in two or more complex samples such as those reProteomic and Genomic Analysis of Cardiovascular Disease.Edited by Jennifer E. van Eyk, Michael J. DunnCopyright © 2003 WILEY-VCH Verlag GmbH & Co.