Главная » Просмотр файлов » Гришина Г.В.,Демин А.И.,Михайлова О.В. Функции многих переменных.МГТУ 2003г

Гришина Г.В.,Демин А.И.,Михайлова О.В. Функции многих переменных.МГТУ 2003г (506117)

Файл №506117 Гришина Г.В.,Демин А.И.,Михайлова О.В. Функции многих переменных.МГТУ 2003г (МУ - Функции многих переменных)Гришина Г.В.,Демин А.И.,Михайлова О.В. Функции многих переменных.МГТУ 2003г (506117)2019-01-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

ФУНКЦИИ МНСИ."ИХ ПЕРЕМЕННЫХ ВОЗВРАТИТЕ КНИГУ НЕ ПОЗЖЕ обозначенного здесь срока Х ф с 3 Р 4Ъ х Москва Издательство МГТУ им, Н.Э, Баумана 2ООЭ УДК 517 ББК 22. 1а73 Г85 Рецензеит А.З. Филинсесиий Гришина ГВ., Донни А,И Мнхайлева О.В. Г85 Функции многих переменных: Методические указаннл к выполненшо домашнего задаиил. — Мл Нз1ьво МГТУ им. Нгй Баумана, 2003. — 44 с, ВВН 5-7038-2266-1 Пособие содержит формулировки основных определений и теорем, примеры примеиеиклрииообразных практических приемов решсиилзадач„ варианты домшпних заданий и рассчитано иа нспользовакие прн изучении базового курса математики на всех фахультстах, Независнмал структура построеииа некоторых разделов позволает„исхода из потребностей специализации, лелшь упор иа более углубленное изучение тех или иных вопросов.

Рассмотрешл темы — дифференцирование функций многих переменных 1ФМП), восстановление функции по дифференциалу, производнал по иаправленнш, градиент и нх приложешш„сложные н неавньш функции, безусловный и условный экстремум ФМП. Длл студентов первого курса всех специальностей. Библиогр. 5 паза, Галина Владимировна Гришина Александр Иванович Демин Ольга Владимировна Михайлова ФУНКЦИИ МНОГИХ ПЕРБМБННЫХ Редактор Е,К Кошагееа Корректор Г,С. Ееллееа Подписано в печать 10.04.03, Формат 60х84/16. Бумага офсстнал.

Печ. л, 2,75, Уел. печ. л, 2,56, Уч.-изд.л. 2,35. Тираж 2500 эш. Изд. № 40, Заки ~$ Издательство МГТУ им. НЗ Ь Баумана. 105005, Москва, 2-а Бауманскал, 5, 18вгч 5-7038-2266.! 1. Метрика н окрестность и пространстве й". Область определения н область значений функции многих переменньгх Рассмотрим многомерное пространство с заданной в нем прямоугольной декартовой системой координат, Определение 1 1. Точкой х ы-мерного пространства К" называется упорддоченнля совокупность гз действительных чисел х = = 1хг,..., х ), где х, — з-я координата точки х. Определение 1.2, Метрикой или расстоянием между точками х иуназываетсявеличинар(х, у) = ~хг — уг)2+... + 1х„— у„)2.

Свойства метрики. Для любых точек х, у, л б К" справедливо: 1) р1х, у) > О, ргх, у) = О со х = у„ 2) Р1х, У) = Р1У, х); 3) р1х, л) < р1х, у) + р(у, л) гнеравенство треугольника). Определение 1.3. Пусть х Е К", 6 > О. Шаровой е-окрестностью точки х называется множество У,(х) = Ту Е К": р1х, у) <е). Проколотой е-охре стносгьго точки х называетсл множество о Уе(х) = Гуго)11(х), Множество Сосо) = 1х ~ К": р1х, О) > 1/л) называется 6-окрестностью бесконечно удаленной точки.

Определение 1.4. Функцией и переменных называется отображение)':,0 -+ К,котороекаждойточкех = (хг, ...,х„) некоторого множества Ю С К" сопоставляет некоторое число у 1х), Множе- ство Ю называется областью определения функции у, а множество Я = Щз): з б .О) — областью значений у.

В тех случаях, когда множество В ие задано, рассматривают естественную область определения, в е. множество всех значений з, для которых выражение )'(з) имеет смысл. 2. График функции. Линии и поверхности уровни Определение 2.1. Пусть т б В С К", у =,Г"(з). Множество точек Г = ((з,у) = (зг> ...,з„, у(зг, ...,з„))) в пространстве Ка+1 называется графигюм Функции у, Для функции двух переменных я = у (з, у) график представляет собой поверхность в трехмерном пространстве. Определение 2.2.

Линией уровня функции Дз,у) называется кривая в плоскости Озу, заданная уравнением у (з, у) = С, где С вЂ” константа. Придавая константе С различные значения, получагот различные линии уровня данией функции. Обычно изображают линии уровня, соответствующие значениям констюпи, отличающимся на постоянную величину гадж Связь между графиком функции з =,г" (з, у) и линиями уровня следующая; линии уровня — зто проекции на плоскость Оху сечений графика плоскостями я = С. Для функции трех переменных У(з, у, я) вместо линий уровня рассматривают поверхности уровня, задаваемые уравнениями Дз,у,з) = С. 3. Предел и непрерывность функции в точке Понятие предела фуикщги многих переменных в точке вво- дят по аналогии с пределом функции одной переменной.

На языке окрестностей оба определения звучат одиггаково. Определение 3.1. Пусть |: Й" -+ Ж. Число а называется пре- делом функции г при з, стремящемся к зс, если те > О, ЕБ(е) > О, а такое, что ах Е Уз(зс)Г(з) б У,(а). Обозначение: 1пп Дз) = а. ~„а Определение 3,2. Функция Дз) называется непрерывной в точ- ке зс, если существует йпг дх) = г(хс). р а Обозначение: у б С(зс). Определение 3.3. Если г" непрерывна в каждой точке з области С С В", то у называется непрерывной в области С. Обозначение: г 6 С(С), Определение 3.4. Точки области определения функции называ- ются точками разрыва, если функция не является непрерывной в зтих точках, 4.

Частньге производные и частные дифференциалы. Дифференцируемость функции и точке Определение 4,1. Пусть функция Дз) огдзеделена в окрестности точки хс = (зс ..., зс). Положим 4 с с, 4 с Тогда — (з ) называется частной производной у(з) по переменог с Ызг ной кч в точке жо: — ( )=У.,( )= — (.) = Ега Н о о с~5' о А У дкч Иж~ ьжочо;б~ж. где Ь у=у(во,".,*~ „ж,'+);,во.„." о)- о о о о о~ -„~(жы...,ж,, ж,,ж, ы...,к„).

Определение 4,2, Частным дифференциалом функции Дм) по переменной яч называется с,.у = ИР(яч) = — 4ж;. д,)' дяч Замечание, Из определенна частных производных функции как обыкновенных производных при условии фиксирования всех переменных, кроме одной, следует, что прн вычислении частных производных можно использовать правила вычисления обыкновенных производных. Пример 4 1. Рассмотрим функцщо Дв, у) = жзея'. Фиксируя переменные у и ж, получим значения частных производных функции ~ соответственно по а н у: ~„= — = 2жек; д,г з дг зз з дл Д = — = Зжзрзе", дл Замечание, Прн и > 2 нз существования в точке частных производных по всем переменным не следует непрерывность функции в атой точке (как зто было для функций одной переменной). Это естественно, так как непрерывность накладывает ограничение на поведение функции во всей окрестности, а не только по направлениям отдельных переменных.

Перейдем теперь к определению дифференцируемости функций многих переменных в точке. Определение 4,3. Назовем вектор Ьж = (Ьж1,..., Ьж„) длиной р = ~„(с ям)з, где Ьх; = ач — ко, приращением переменной «=1 ж, а величину Ь| =- дю) — дзо) — полным приращением функции у в точке зл. Определение 4.4. Функция у(ж) = Джы...,к,„) называется дифференцнруемой в точке жо, если существуют действительные числа Аы..., А„, такие, что Ьг = А1 ба~+...+А„Аж„+к(Ьв) р, где е(Ьж) -+ 0 при р -+ О. Обозначение: у 6 .0(жо). Определение 4.5.

Если Дж) Е В(жо), то линейная часть приращения у в точке жо называется дифференциалом или полным дифференциалом функции Х в точке жо, и обозначается Теорема 4 1, Если функция )~ Е Х) (ао), то г" Е С(аР). Теорема 4.2. Если )" б .0(жо) и ф~, = Атдв1 + ... + А. два, тоА = — (з ), Ю о дач Таким образом, дифференциал функций многих переменных определяется однозначно. Теорем» 4З (достаточное условие дифференцнруемости функции в точке). Бали у: К" -+ )к и в некоторой окрестности точки жо д~ существуют все частные производные —, з = 1,..., п, причем дж,' — ~О( ) ° УЕ1)(л) Ю о дач 5.

Градиент и производнаи по направлению Определение 5,1. Если в пространстве К" задана прямоугольная декартова система координат и функция у(ж) имеет в точке ж~ = ®...,ж~) частные производные по всем переменным, то вектор 3 аЧ=~ — ( ),,— (')) д~ ~д, 'д „ называется градиентом функции ~ в точке хе, Для функций двух нлн трех переменных градиент в каждой точ- ке перпендикулярен соответственно линии или поверхности уров. ня, проходящей через эту точку. Пусть функпня Дх) определена в некоторой окрестности точ- ки хс = (хсы..., хс). Проведем через зту точку прямую в напра- вленки единичного вектора 1 = (1ы, 1„). Произвольная точка М' втой прямой имеет координаты (хг~ + 11ы, 4 + г1„), где г ~ И позтому у(М) = ~(х~+ г1ы..., х'„'+11„) является функцией одной переменной С Определение 52. Производной функции 1 в точке хс по напра- влению единичного вектора 1 называется предел дг, 1(4+и„...,хо +Е1„) — 1(Х1,....,хо) ==1(ш д1 й-Фс Ф Производную по направлению вычисляют по формуле дг.

— = (йгаг11, 1) = — 1г +... + — 1„, д1 дхг дхп Для случая двух и трех переменных координаты единично- го вектора 1 совпадают с его направляющими косинусами, Фор- мулу для производной функции Дх,р,з) по направлению 1 = (сова, сов д, сов у) можно переписать в виде д~ д( д~ дУ вЂ” = — соз гг + — сов,д + — соз т. д1 дх ду дя Если направление задано вектором а произвольной длины, то ду (йгаг(„Г, а) да Д Скорость роста функпни в данной точке максимальна по направлению градиента, и максимальное значение производной функции по направлению равно ~агапам.

Производная Функции двух переменных по направлению, касательному к линии уровня в данной точке, равна нулю. Пример 5,1. Найти производную функции г = хз + йз в точке М(1, 1) по направлению 1, составляющему угол а = х/3 с положительным направлением осн Ох и тупой угол с осью Оу.

дх /дз дг Решение: = =~ — созгг+ — совд = 2совя/3— д1,.~ дх др — 2 з|п я/3. дз1 Следовательно, — ~ = 1 — ~3, д1-~ б, Касательная плоскость н нормаль к цоверхности Предположим, поверхность Р в трехмерном пространстве задана уравнением Р(х> у, з) = О, где Р— дифференцируемая функ- цня. Эту поверхность можно рассматривать как поверхность уровня функции трех переменных. Направление нормали к поверхности Р в точке М(хс, рс, яс) совпадает с направлением градиента функции Р(х,у, з) в зтой точке: х( = йгаг1Р ~ьг — — (Р„(М), Р (М), Р,(М)). Касательная плоскость к поверхности Р в точке М задается Р (М)( .а)+Р (М)(, „о)+Р (М)( зс) О х — х р — д я — 2 "0 о а а нормаль — уравнениями— Если поверхность задана уравнением з = „г(х, р), то зто урав- пенне можно переписать в виде уравнении поверхности уровня Р( ч.

Характеристики

Тип файла
PDF-файл
Размер
3,78 Mb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее