М.А. Амелина - Конспект лекций по курсу - Компьютерный анализ и синтез электронных устройств (1267377), страница 27
Текст из файла (страница 27)
ɩ.). Ⱦɥɹ ɤɚɠɞɨɣ ɪɟɚɥɢɡɚɰɢɢ ɩɪɨɰɟɫɫɚ ɭ(ɯ) ɪɚɫɫɱɢɬɵɜɚɟɬɫɹ ɝɥɨɛɚɥɶɧɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ F (the collactionfunction), ɧɚɩɪɢɦɟɪ ɦɚɤɫɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɪɟɚɥɢɡɚɰɢɢ F=max{y(x)} (ɜɜɨɞɢɬɫɹ HIGH_Y). ɇɚɡɜɚɧɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ F ɜɜɨɞɢɬɫɹ, ɧɚ ɫɬɪɨɤɟ Report When (ɫɦ. ɪɢɫ. 4.21, ɚ) ɢɥɢ ɜɵɛɢɪɚɟɬɫɹ ɢɡ ɨɤɧɚFunctions (ɪɢɫ. 4.21, ɛ), ɨɬɤɪɵɜɚɟɦɨɝɨ ɧɚɠɚɬɢɟɦ ɧɚ ɤɥɚɜɢɲɭ GET (ɫɦ.
ɪɢɫ. 4.21, ɚ).ɉɨɫɥɟ ɭɫɬɚɧɨɜɤɢ ɩɚɪɚɦɟɬɪɨɜ ɧɚɱɢɧɚɸɬ ɦɨɞɟɥɢɪɨɜɚɧɢɟ ɜɵɛɨɪɨɦ ɩɭɧɤɬɚ Run ɜ ɦɟɧɸ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɜɵɛɪɚɧɧɨɝɨ ɬɢɩɚ ɢɥɢ ɧɚɠɚɬɢɟɦ F2. Ɋɟɚɥɢɡɚɰɢɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɰɟɩɢ ɭ(ɯ) ɜɵɜɨɞɹɬɫɹ ɧɚ ɷɤɪɚɧ ɞɢɫɩɥɟɹ ɜ ɜɢɞɟ ɫɟɦɟɣɫɬɜɚ ɝɪɚɮɢɤɨɜ, ɤɚɤ ɜ ɤɚɱɟɫɬɜɟ ɩɪɢɦɟɪɚ ɩɨɤɚɡɚɧɨ ɧɚ ɪɢɫ. 4.23ɩɪɢ ɪɚɫɱɟɬɟ ɱɚɫɬɨɬɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɪɟɡɨɧɚɧɫɧɨɝɨ ɤɨɧɬɭɪɚ.ɋɬɚɬɢɫɬɢɱɟɫɤɚɹ ɨɛɪɚɛɨɬɤɚ ɪɟɡɭɥɶɬɚɬɨɜ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɩɪɨɢɡɜɨɞɢɬɫɹ ɩɨ ɤɨɦɚɧɞɟ MonteCarlo/Histograms/Add Histograms. ȿɟ ɪɟɡɭɥɶɬɚɬɵ ɩɪɟɞɫɬɚɜɥɹɸɬɫɹ ɜ ɜɢɞɟ ɝɢɫɬɨɝɪɚɦɦɵ, ɩɪɢɦɟɪɧɵɣ ɜɢɞ ɤɨɬɨɪɨɣ ɩɨɤɚɡɚɧ ɧɚ ɪɢɫ. 4.24.
Ⱦɜɨɣɧɨɣ ɳɟɥɱɨɤ ɤɭɪɫɨɪɨɦ ɦɵɲɢ, ɪɚɫɩɨɥɨɠɟɧɧɨɦ ɜɨɤɧɟ ɝɢɫɬɨɝɪɚɦɦ, ɨɬɤɪɵɜɚɟɬɫɹ ɞɢɚɥɨɝɨɜɨɟ ɨɤɧɨ ɡɚɞɚɧɢɹ ɩɚɪɚɦɟɬɪɨɜ Properties (ɡɚɤɥɚɞɤɚ Plot),ɨɧɨ ɠɟ ɨɬɤɪɵɜɚɟɬɫɹ ɜ ɧɚɱɚɥɟ ɜɵɩɨɥɧɟɧɢɹ ɤɨɦɚɧɞɵ Add Histograms. ȼ ɧɟɦ ɜ ɫɬɪɨɤɟ Function(ɜɵɡɵɜɚɟɦɨɣ ɧɚɠɚɬɢɟɦ ɤɥɚɜɢɲɢ GET) ɭɤɚɡɵɜɚɟɬɫɹ ɢɦɹ ɚɧɚɥɢɡɢɪɭɟɦɨɣ ɮɭɧɤɰɢɢ F, ɚ ɜ ɫɬɪɨɤɟExpression — ɢɦɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɰɟɩɢ ɭ (ɫɦ. ɪɢɫ. 4.24).ɇɚ ɝɪɚɮɢɤɟ ɝɢɫɬɨɝɪɚɦɦɵ ɩɨ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ ɨɫɢ ɨɬɤɥɚɞɵɜɚɸɬɫɹ ɡɧɚɱɟɧɢɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢF, ɩɨ ɜɟɪɬɢɤɚɥɢ — ɜɟɪɨɹɬɧɨɫɬɢ ɜ ɩɪɨɰɟɧɬɚɯ.Ɂɧɚɱɟɧɢɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ F ɜɨ ɜɫɟɯ ɪɟɚɥɢɡɚɰɢɹɯ ɜɵɜɟɞɟɧɵ ɜ ɨɤɧɟ ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɷɤɪɚɧɚ.ɇɢɠɟ ɝɢɫɬɨɝɪɚɦɦ ɪɚɫɩɨɥɚɝɚɟɬɫɹ ɨɤɧɨ, ɜ ɤɨɬɨɪɨɦ ɦɨɠɧɨ ɡɚɞɚɬɶ ɤɨɥɢɱɟɫɬɜɨ ɢɧɬɟɪɜɚɥɨɜ ɪɚɡɛɢɟɧɢɹ ɨɛɥɚɫɬɢ ɨɩɪɟɞɟɥɟɧɢɹ ɚɧɚɥɢɡɢɪɭɟɦɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ F (Intervals) ɢ ɡɧɚɱɟɧɢɹ ɟɟ ɝɪɚɧɢɰ(Low, High).ȼ ɧɢɠɧɟɣ ɱɚɫɬɢ ɷɤɪɚɧɚ ɫɥɟɜɚ ɩɨɦɟɳɚɟɬɫɹ ɫɥɟɞɭɸɳɚɹ ɫɬɚɬɢɫɬɢɱɟɫɤɚɹ ɢɧɮɨɪɦɚɰɢɹ: Low— ɦɢɧɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ, Mean — ɟɟ ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ, High — ɦɚɤɫɢɦɚɥɶɧɨɟɡɧɚɱɟɧɢɟ, Sigma — ɫɪɟɞɧɟɤɜɚɞɪɚɬɢɱɟɫɤɨɟ ɨɬɤɥɨɧɟɧɢɟ ɫɥɭɱɚɣɧɨɣ ɜɟɥɢɱɢɧɵ F.Ɋɟɡɭɥɶɬɚɬɵ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɨɛɪɚɛɨɬɤɢ ɡɚɧɨɫɹɬɫɹ ɬɚɤɠɟ ɜ ɬɟɤɫɬɨɜɵɣ ɮɚɣɥ ɩɨɫɥɟ ɜɵɛɨɪɚɩɨɞɤɨɦɚɧɞɵ Monte Carlo/Statistics.
Ɍɟɤɫɬɨɜɚɹ ɢɧɮɨɪɦɚɰɢɹ ɪɚɡɦɟɳɚɟɬɫɹ ɜ ɮɚɣɥɚɯ, ɢɦɟɸɳɢɯɬɨ ɠɟ ɢɦɹ, ɱɬɨ ɢ ɢɦɹ ɫɯɟɦɵ, ɢ ɪɚɫɲɢɪɟɧɢɹ ɢɦɟɧɢ .ȺɆɋ, .DMC, .ɌɆɋ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɜɢɞɚ ɚɧɚɥɢɡɚ. ɉɪɢɦɟɪɵ ɫɬɚɬɢɫɬɢɱɟɫɤɨɝɨ ɚɧɚɥɢɡɚ ɫɦ. ɜ ɫɯɟɦɧɵɯ ɮɚɣɥɚɯ CARLO, CARL02, CARLO4 ɩɨɞɤɚɬɚɥɨɝɚ Analysis\Monte Carlo.4.10.Ɋɫɩɬɧɩɭɫ ɣ ɩɜɫɛɜɩɭɥɛ ɫɠɢɮɦɷɭɛɭɩɝ ɧɩɟɠɦɣɫɩɝɛɨɣɺɉɨ ɡɚɜɟɪɲɟɧɢɢ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɜ ɝɪɚɮɢɱɟɫɤɨɦ ɨɤɧɟ ɜɵɜɨɞɹɬɫɹ ɝɪɚɮɢɤɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤɫɯɟɦɵ.
Ⱦɚɥɶɧɟɣɲɚɹ ɨɛɪɚɛɨɬɤɚ ɝɪɚɮɢɤɨɜ ɦɨɠɟɬ ɜɵɩɨɥɧɹɬɶɫɹ ɜ ɧɟɫɤɨɥɶɤɢɯ ɪɟɠɢɦɚɯ.4.10.1.ɉɥɨɩ ɩɭɩɜɫɛɡɠɨɣɺ ɫɠɢɮɦɷɭɛɭɩɝ ɧɩɟɠɦɣɫɩɝɛɨɣɺɊɚɫɫɦɨɬɪɢɦ ɫɪɟɞɫɬɜɚ ɨɬɨɛɪɚɠɟɧɢɹ, ɩɪɨɫɦɨɬɪɚ, ɨɛɪɚɛɨɬɤɢ ɫɢɝɧɚɥɨɜ ɢ ɧɚɧɟɫɟɧɢɹ ɧɚɞɩɢɫɟɣ ɧɚ ɢɯ ɝɪɚɮɢɤɢ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɩɨɫɥɟ ɡɚɜɟɪɲɟɧɢɹ ɦɨɞɟɥɢɪɨɜɚɧɢɹ.ȼɨ-ɩɟɪɜɵɯ, ɞɜɨɣɧɨɣ ɳɟɥɱɨɤ ɤɭɪɫɨɪɨɦ ɦɵɲɢ ɜ ɩɨɥɟ ɝɪɚɮɢɤɨɜ ɨɬɤɪɵɜɚɟɬ ɞɢɚɥɨɝɨɜɨɟ ɨɤɧɨProperties (ɫɦ. ɪɢɫ.
4.11). ȼɨ-ɜɬɨɪɵɯ, ɧɚɠɚɬɢɟ ɧɚ ɩɢɤɬɨɝɪɚɦɦɵ ɜ ɦɟɧɸ ɢɧɫɬɪɭɦɟɧɬɨɜ ɜɤɥɸɱɚɟɬɨɞɢɧ ɢɡ ɫɥɟɞɭɸɳɢɯ ɪɟɠɢɦɨɜ:126Ɇ.Ⱥ. Ⱥɦɟɥɢɧɚ03.03.2006ɫɬɪ. 127 ɢɡ 135Scale (F7) — ɜɵɜɨɞ ɧɚ ɜɟɫɶ ɷɤɪɚɧ ɱɚɫɬɢ ɝɪɚɮɢɤɚ, ɡɚɤɥɸɱɟɧɧɨɝɨ ɜ ɪɚɦɤɭ.(F8) — ɪɟɠɢɦ ɷɥɟɤɬɪɨɧɧɨɝɨ ɤɭɪɫɨɪɚ ɞɥɹ ɫɱɢɬɵɜɚɧɢɹ ɤɨɨɪɞɢɧɚɬ ɨɞɧɨɣ ɢɥɢ ɞɜɭɯ ɬɨɱɟɤɧɚ ɝɪɚɮɢɤɟ, ɢɦɹ ɩɟɪɟɦɟɧɧɨɣ ɤɨɬɨɪɨɣ ɩɨɞɱɟɪɤɧɭɬɨ. Ɋɚɫɩɨɥɨɠɟɧɢɟ ɬɨɱɟɤ ɧɚ ɝɪɚɮɢɤɟ ɢɡɦɟɧɹɟɬɫɹɢɯ ɛɭɤɫɢɪɨɜɤɨɣ ɩɪɚɜɨɣ ɢ ɥɟɜɨɣ ɤɧɨɩɤɚɦɢ ɦɵɲɢ.Point Tag — ɧɚɧɟɫɟɧɢɟ ɧɚ ɝɪɚɮɢɤ ɡɧɚɱɟɧɢɣ ɤɨɨɪɞɢɧɚɬ X, ɜɵɛɪɚɧɧɨɣ ɬɨɱɤɢ.
Ɏɨɪɦɚɬɩɪɟɞɫɬɚɜɥɟɧɢɹ ɱɢɫɟɥ ɡɚɞɚɟɬɫɹ ɩɚɪɚɦɟɬɪɨɦ Analysis Plot Tags ɧɚ ɡɚɤɥɚɞɤɟ Format ɨɤɧɚPreferences.Horizontal Tag — ɧɚɧɟɫɟɧɢɟ ɪɚɫɫɬɨɹɧɢɹ ɩɨ ɝɨɪɢɡɨɧɬɚɥɢ ɦɟɠɞɭ ɞɜɭɦɹ ɜɵɛɪɚɧɧɵɦɢɬɨɱɤɚɦɢ ɝɪɚɮɢɤɚ. Ɏɨɪɦɚɬ ɩɪɟɞɫɬɚɜɥɟɧɢɹ ɱɢɫɟɥ ɡɚɞɚɟɬɫɹ ɩɚɪɚɦɟɬɪɨɦ Analysis Plot Tags ɧɚ ɡɚɤɥɚɞɤɟ Format ɨɤɧɚ Preferences.Vertical Tag — ɧɚɧɟɫɟɧɢɟ ɪɚɫɫɬɨɹɧɢɹ ɩɨ ɜɟɪɬɢɤɚɥɢ ɦɟɠɞɭ ɞɜɭɦɹ ɜɵɛɪɚɧɧɵɦɢ ɬɨɱɤɚɦɢɝɪɚɮɢɤɚ. Ɏɨɪɦɚɬ ɩɪɟɞɫɬɚɜɥɟɧɢɹ ɱɢɫɟɥ ɡɚɞɚɟɬɫɹ ɩɚɪɚɦɟɬɪɨɦ Analysis Plot Tags ɧɚ ɡɚɤɥɚɞɤɟFormat ɨɤɧɚ Preferences.Text Mode — ɜɜɨɞ ɬɟɤɫɬɚ (ɜ ɚɛɫɨɥɸɬɧɵɯ ɢ ɨɬɧɨɫɢɬɟɥɶɧɵɯ ɤɨɨɪɞɢɧɚɬɚɯ).Properties (F10) — ɩɪɨɫɦɨɬɪ ɢ ɪɟɞɚɤɬɢɪɨɜɚɧɢɟ ɫɜɨɣɫɬɜ ɨɛɴɟɤɬɨɜ.4.10.2.Ɋɛɨɩɫɛɧɣɫɩɝɛɨɣɠ ɩɥɨɛ ɫɠɢɮɦɷɭɛɭɩɝ ɧɩɟɠɦɣɫɩɝɛɨɣɺɉɚɧɨɪɚɦɢɪɨɜɚɧɢɟɦ ɧɚɡɵɜɚɟɬɫɹ ɩɟɪɟɦɟɳɟɧɢɟ ɨɤɧɚ ɛɟɡ ɢɡɦɟɧɟɧɢɹ ɦɚɫɲɬɚɛɚ ɢɡɨɛɪɚɠɟɧɢɹ. Ɉɧɨ ɜɵɩɨɥɧɹɟɬɫɹ ɫ ɩɨɦɨɳɶɸ ɤɥɚɜɢɚɬɭɪɵ ɢɥɢ ɦɵɲɢ.Ʉɥɚɜɢɚɬɭɪɚ.
Ɉɞɧɨɜɪɟɦɟɧɧɨɟ ɧɚɠɚɬɢɟ ɤɥɚɜɢɲ ɋtrl+<ɤɥɚɜɢɲɚ ɫɬɪɟɥɨɤ> ɩɟɪɟɦɟɳɚɟɬ ɝɪɚɮɢɤɢ ɚɤɬɢɜɧɨɝɨ ɨɤɧɚ ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɫɬɪɟɥɤɢ. ɇɚɩɪɢɦɟɪ, ɧɚɠɚɬɢɟ Ctrl+→ ɩɟɪɟɦɟɳɚɟɬ ɜɫɟ ɝɪɚɮɢɤɢ ɜɩɪɚɜɨ. Ⱥɤɬɢɜɧɵɦ ɹɜɥɹɟɬɫɹ ɨɤɧɨ ɝɪɚɮɢɤɨɜ, ɜ ɤɨɬɨɪɨɦ ɳɟɥɱɤɨɦ ɤɭɪɫɨɪɚ ɜɵɛɪɚɧɨ ɢɦɹ ɨɞɧɨɝɨ ɢɡ ɝɪɚɮɢɤɨɜ (ɨɧɨ ɩɨɦɟɱɚɟɬɫɹ ɩɨɞɱɟɪɤɢɜɚɧɢɟɦ).Ɇɵɲɶ. ɓɟɥɱɨɤ ɢ ɛɭɤɫɢɪɨɜɤɚ ɩɪɚɜɨɣ ɤɧɨɩɤɢ ɦɵɲɢ ɩɟɪɟɦɟɳɚɟɬ ɝɪɚɮɢɤ ɞɜɢɠɟɧɢɟɦ ɦɵɲɢ(ɤɭɪɫɨɪ ɩɪɢ ɷɬɨɦ ɩɪɢɧɢɦɚɟɬ ɮɨɪɦɭ ɪɭɤɢ).
Ɉɞɧɚɤɨ ɩɚɧɨɪɚɦɢɪɨɜɚɧɢɟ ɝɪɚɮɢɤɨɜ ɜ ɪɟɠɢɦɟ ɷɥɟɤɬɪɨɧɧɨɝɨ ɤɭɪɫɨɪɚ Cursor Mode ɫ ɩɨɦɨɳɶɸ ɦɵɲɢ ɧɟɜɨɡɦɨɠɧɨ.4.10.3.ɇɛɬɳɭɛɜɣɫɩɝɛɨɣɠ ɩɥɨɛ ɫɠɢɮɦɷɭɛɭɩɝ ɧɩɟɠɦɣɫɩɝɛɨɣɺɆɚɫɲɬɚɛɢɪɨɜɚɧɢɟ ɝɪɚɮɢɤɨɜ ɜɵɩɨɥɧɹɟɬɫɹ ɫ ɩɨɦɨɳɶɸ ɤɨɦɚɧɞ ɦɟɧɸ Scope, ɞɭɛɥɢɪɭɟɦɵɯɫɥɟɞɭɸɳɢɦɢ ɩɢɤɬɨɝɪɚɦɦɚɦɢ ɢɥɢ ɮɭɧɤɰɢɨɧɚɥɶɧɵɦɢ ɤɥɚɜɢɲɚɦɢ:Auto Scale, F6 — ɚɜɬɨɦɚɬɢɱɟɫɤɨɟ ɦɚɫɲɬɚɛɢɪɨɜɚɧɢɟ ɝɪɚɮɢɤɨɜ ɜɵɛɪɚɧɧɨɝɨ ɨɤɧɚ ɬɚɤ, ɱɬɨɛɵ ɨɧɢ ɡɚɧɹɥɢ ɜɫɟ ɨɤɧɨ.Restore Limit Scales, Ctrl+Home — ɩɟɪɟɱɟɪɱɢɜɚɧɢɟ ɜɫɟɯ ɝɪɚɮɢɤɨɜ ɜ ɦɚɫɲɬɚɛɟ, ɭɤɚɡɚɧɧɨɦ ɜ ɨɤɧɟ Analysis Limits.4.10.4.ɋɠɡɣɧ ɸɦɠɥɭɫɩɨɨɩɤ ɦɮɪɶ Scopeɏɚɪɚɤɬɟɪ ɨɮɨɪɦɥɟɧɢɹ ɝɪɚɮɢɤɨɜ, ɩɪɟɞɫɬɚɜɥɟɧɢɹ ɧɚ ɧɢɯ ɢɧɮɨɪɦɚɰɢɢ ɢ ɤɨɦɚɧɞɵ ɭɩɪɚɜɥɟɧɢɹ ɷɥɟɤɬɪɨɧɧɵɦ ɤɭɪɫɨɪɨɦ ɨɩɪɟɞɟɥɹɸɬɫɹ ɜ ɦɟɧɸ ɪɟɠɢɦɚ Scope, ɤɨɦɚɧɞɵ ɤɨɬɨɪɨɝɨ ɩɪɢɜɟɞɟɧɵɜ ɬɚɛɥ. 4.1.ɉɪɢ ɜɤɥɸɱɟɧɢɢ ɪɟɠɢɦɚ Cursor mode ɜ ɧɚɱɚɥɟ ɤɨɨɪɞɢɧɚɬ ɩɨɹɜɥɹɸɬɫɹ ɢɡɨɛɪɚɠɟɧɢɹ ɞɜɭɯɜɟɪɬɢɤɚɥɶɧɵɯ ɩɭɧɤɬɢɪɧɵɯ ɥɢɧɢɣ, ɩɨɦɟɳɚɟɦɵɯ ɜ ɨɩɪɟɞɟɥɟɧɧɵɟ ɬɨɱɤɢ ɝɪɚɮɢɤɨɜ ɧɚɠɚɬɢɟɦ ɥɟɜɨɣ ɢ ɩɪɚɜɨɣ ɤɧɨɩɨɤ ɦɵɲɢ ɞɥɹ ɩɪɨɜɟɞɟɧɢɹ ɪɚɡɥɢɱɧɵɯ ɢɡɦɟɪɟɧɢɣ.
Ʉɭɪɫɨɪɵ ɩɪɢɜɹɡɵɜɚɸɬɫɹ ɤɝɪɚɮɢɤɚɦ, ɢɦɟɧɚ ɤɨɬɨɪɵɯ ɬɚɤɠɟ ɜɵɛɢɪɚɸɬɫɹ ɤɧɨɩɤɚɦɢ ɦɵɲɢ — ɜɵɛɪɚɧɧɵɟ ɢɦɟɧɚ ɩɨɞɱɟɪɤɢ127D:\Ɉɩɢɫɚɧɢɟ MC8\MC8_V1_2.DOCɜɚɸɬɫɹ. ɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɨɜ ɩɨ ɜɵɛɪɚɧɧɵɦ ɝɪɚɮɢɤɚɦ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɫ ɩɨɦɨɳɶɸ ɤɧɨɩɨɤɦɵɲɢ ɢɥɢ ɤɥɚɜɢɚɬɭɪɵ (ɱɬɨ ɨɛɟɫɩɟɱɢɜɚɟɬ ɛɨɥɟɟ ɬɨɱɧɭɸ ɧɚɫɬɪɨɣɤɭ): ɩɟɪɜɵɣ ɤɭɪɫɨɪ ɩɟɪɟɦɟɳɚɟɬɫɹ ɜɥɟɜɨ ɢɥɢ ɜɩɪɚɜɨ ɧɚɠɚɬɢɟɦ ɤɥɚɜɢɲ ← ɢɥɢ →, ɜɬɨɪɨɣ — ɨɞɧɨɜɪɟɦɟɧɧɵɦ ɧɚɠɚɬɢɟɦ ɤɥɚɜɢɲ Shift+→, Shift+←. ɋɧɢɡɭ ɨɬ ɤɚɠɞɨɝɨ ɨɤɧɚ ɝɪɚɮɢɤɨɜ ɪɚɫɩɨɥɚɝɚɟɬɫɹ ɬɚɛɥɢɰɚ, ɱɢɫɥɨ ɫɬɪɨɤ ɤɨɬɨɪɨɣ ɪɚɜɧɨ ɱɢɫɥɭ ɩɨɫɬɪɨɟɧɧɵɯ ɝɪɚɮɢɤɨɜ ɩɥɸɫ ɨɞɧɚ ɫɬɪɨɤɚ, ɜ ɤɨɬɨɪɨɣ ɪɚɡɦɟɳɚɸɬɫɹ ɡɧɚɱɟɧɢɹɧɟɡɚɜɢɫɢɦɨɣ ɩɟɪɟɦɟɧɧɨɣ, ɨɬɤɥɚɞɵɜɚɟɦɨɣ ɩɨ ɨɫɢ X (ɜɪɟɦɹ, ɱɚɫɬɨɬɚ ɢ ɬ.
ɞ.). ȼ ɤɨɥɨɧɤɚɯ ɬɚɛɥɢɰɵɪɚɫɩɨɥɚɝɚɟɬɫɹ ɢɧɮɨɪɦɚɰɢɹ:ɂɦɹ ɩɟɪɟɦɟɧɧɨɣ, ɜɵɜɟɞɟɧɧɨɣ ɧɚ ɝɪɚɮɢɤ,Left — ɡɧɚɱɟɧɢɟ ɩɟɪɟɦɟɧɧɨɣ, ɩɨɦɟɱɟɧɧɨɣ ɥɟɜɵɦ ɤɭɪɫɨɪɨɦ,Right — ɡɧɚɱɟɧɢɟ ɩɟɪɟɦɟɧɧɨɣ, ɩɨɦɟɱɟɧɧɨɣ ɩɪɚɜɵɦ ɤɭɪɫɨɪɨɦ,Delta — ɪɚɡɧɨɫɬɶ ɡɧɚɱɟɧɢɣ ɤɨɨɪɞɢɧɚɬ ɤɭɪɫɨɪɚ,Slope — ɬɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɩɪɹɦɨɣ (DELTAy/DELTAx), ɫɨɟɞɢɧɹɸɳɟɣ ɞɜɚ ɤɭɪɫɨɪɚ.ɉɟɪɟɦɟɳɟɧɢɟ ɥɟɜɨɝɨ ɤɭɪɫɨɪɚ ɦɟɠɞɭ ɧɟɫɤɨɥɶɤɢɦɢ ɝɪɚɮɢɤɚɦɢ ɪɟɡɭɥɶɬɚɬɨɜ ɦɧɨɝɨɜɚɪɢɚɧɬɧɨɝɨ ɚɧɚɥɢɡɚ ɜɵɩɨɥɧɹɟɬɫɹ ɧɚɠɚɬɢɟɦ ɤɥɚɜɢɲ ↑ , ↓ , ɩɪɚɜɨɝɨ ɤɭɪɫɨɪɚ — Shift ↑ ,( ↓ ).Ɍɚɛɥɢɰɚ 4.1.
Ʉɨɦɚɧɞɵ ɪɟɠɢɦɚ ScopeɅɩɧɛɨɟɛɈɛɢɨɛɲɠɨɣɠɍɞɚɥɟɧɢɟ ɜɫɟɯ ɡɧɚɱɟɧɢɣ ɤɨɨɪɞɢɧɚɬ, ɬɟɤɫɬɚ ɢ ɜɫɟɯ ɝɪɚɮɢɱɟɫɤɢɯ ɨɛɴɟɤɬɨɜ, ɧɚɧɟɫɟɧDeleteAllɧɵɯ ɪɚɧɟɟ (ɞɥɹ ɭɞɚɥɟɧɢɹ ɢɧɞɢɜɢɞɭɚɥɶɧɨɝɨ ɨɛɴɟɤɬɚ ɨɧ ɜɵɛɢɪɚɟɬɫɹ ɳɟɥɱɤɨɦ ɤɭɪɫɨObjectsɪɚ ɢ ɡɚɬɟɦ ɭɞɚɥɹɟɬɫɹ ɧɚɠɚɬɢɟɦ ɤɥɚɜɢɲɢ Delete ɢɥɢ Ctrl+X)Auto Scale (F6) Ⱥɜɬɨɦɚɬɢɱɟɫɤɨɟ ɦɚɫɲɬɚɛɢɪɨɜɚɧɢɟ ɝɪɚɮɢɤɨɜ ɜɵɛɪɚɧɧɨɝɨ ɨɤɧɚRestore Limitɉɟɪɟɱɟɪɱɢɜɚɧɢɟ ɝɪɚɮɢɤɨɜ ɜɫɟɯ ɨɤɨɧ ɜ ɦɚɫɲɬɚɛɟ, ɭɤɚɡɚɧɧɨɦ ɧɚ ɡɚɤɥɚɞɤɟ Scale ɞɢɚScalesɥɨɝɨɜɨɝɨ ɨɤɧɚ Properties(Ctrl+Home)Viewɐɛɫɛɥɭɠɫ ɩɭɩɜɫɛɡɠɨɣɺ ɣɨɯɩɫɧɛɱɣɣ:Data PointsɈɬɨɛɪɚɠɟɧɢɟ ɧɚ ɝɪɚɮɢɤɚɯ ɪɚɫɱɟɬɧɵɯ ɬɨɱɟɤɇɚɧɟɫɟɧɢɟ ɧɚ ɝɪɚɮɢɤɢ ɫɩɟɰɢɚɥɶɧɵɯ ɡɧɚɱɤɨɜ ɞɥɹ ɨɛɥɟɝɱɟɧɢɹ ɢɯTokensɪɚɫɩɨɡɧɚɜɚɧɢɹɇɚɧɟɫɟɧɢɟ ɪɚɡɦɟɬɤɢ ɤɨɨɪɞɢɧɚɬɧɵɯ ɨɫɟɣ ɜɦɟɫɬɨ ɢɡɨɛɪɚɠɟɧɢɹRulerɫɟɬɤɢPlus MarkɁɚɦɟɧɚ ɢɡɨɛɪɚɠɟɧɢɹ ɫɟɬɤɢ ɡɧɚɤɚɦɢ «+»HorizontalAxisɇɚɧɟɫɟɧɢɟ ɫɟɬɤɢ ɩɨ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ ɨɫɢ ɤɨɨɪɞɢɧɚɬGridsVertical Axis Grids ɇɚɧɟɫɟɧɢɟ ɫɟɬɤɢ ɩɨ ɜɟɪɬɢɤɚɥɶɧɨɣ ɨɫɢ ɤɨɨɪɞɢɧɚɬɇɚɧɟɫɟɧɢɟ ɛɨɥɟɟ ɦɟɥɤɨɣ ɥɨɝɚɪɢɮɦɢɱɟɫɤɨɣ ɫɟɬɤɢ ɧɚ ɜɫɟɯ ɨɫɹɯMinor Log Gridsɤɨɨɪɞɢɧɚɬ, ɪɚɡɦɟɱɟɧɧɵɯ ɜ ɥɨɝɚɪɢɮɦɢɱɟɫɤɨɦ ɦɚɫɲɬɚɛɟBaselineɇɚɧɟɫɟɧɢɟ ɧɭɥɟɜɨɣ ɥɢɧɢɢ ɧɚ ɜɵɛɪɚɧɧɵɣ ɝɪɚɮɢɤɉɪɨɜɟɞɟɧɢɟ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ ɥɢɧɢɢ ɱɟɪɟɡ ɬɨɱɤɭ ɩɟɪɟɫɟɱɟɧɢɹHorizontal Cursorɤɭɪɫɨɪɚ ɫ ɝɪɚɮɢɤɨɦ ɩɪɢ ɜɤɥɸɱɟɧɧɨɦ ɪɟɠɢɦɟ Cursor ModeɎɪɫɛɝɦɠɨɣɠ ɣɢɩɜɫɛɡɠɨɣɠɧ ɥɩɩɫɟɣɨɛɭ ɨɛ ɞɫɛɯɣɥɛɰ (ɥɩɧɛɨɟɶ ɟɩɬɭɮɪɨɶ ɝ ɫɠ-Trackers128ɡɣɧɠ Cursor Mode, ɛɥɭɣɝɣɢɣɫɮɠɧɶɧ ɨɛɡɛɭɣɠɧ ɪɣɥɭɩɞɫɛɧɧɶ):Cursorȼɤɥɸɱɟɧɢɟ/ɜɵɤɥɸɱɟɧɢɟ ɤɨɨɪɞɢɧɚɬ ɜɟɪɬɢɤɚɥɶɧɵɯ ɤɭɪɫɨɪɨɜ ɧɚ(Ctrl+Shifl+C)ɬɨɱɤɟ ɩɟɪɟɫɟɱɟɧɢɹ ɫ ɝɪɚɮɢɤɨɦ.ȼɤɥɸɱɟɧɢɟ/ɜɵɤɥɸɱɟɧɢɟ ɢɧɞɢɤɚɰɢɢ ɤɨɨɪɞɢɧɚɬ ɬɨɱɟɤ ɩɟɪɟɫɟɱɟIntercept (Ctrl+l)ɧɢɹ ɜɟɪɬɢɤɚɥɶɧɵɯ ɤɭɪɫɨɪɨɜ ɫ ɝɪɚɮɢɤɨɦ ɧɚ ɨɫɹɯ ɤɨɨɪɞɢɧɚɬMouse (Ctrl+M)ȼɤɥɸɱɟɧɢɟ/ɜɵɤɥɸɱɟɧɢɟ ɤɨɨɪɞɢɧɚɬ ɤɭɪɫɨɪɚ ɦɵɲɢ)Ɇ.Ⱥ.
ȺɦɟɥɢɧɚCursorFunctionsLabel BranchesLabel Time (Frequency) PointAnimateOptions...Normalize atCursor (Ctrl+N)Go To X...(Shift+Ctrl+X)GO TO Y...(Shift+Ctrl+Y)Go toPerformance...Go to BranchTag Left Cursor(Ctrl+L)Tag Right Cursor (Ctrl+R)03.03.2006ɫɬɪ. 129 ɢɡ 135Ɋɠɫɠɧɠɴɠɨɣɠ ɥɮɫɬɩɫɛ ɥ ɰɛɫɛɥɭɠɫɨɶɧ ɭɩɲɥɛɧ ɝɶɜɫɛɨɨɩɞɩ ɞɫɛɯɣɥɛ (ɥɩɧɛɨɟɶ ɟɩɬɭɮɪɨɶ ɝ ɫɠɡɣɧɠ Cursor Mode, ɛɥɭɣɝɣɢɣɫɮɠɧɶɧ ɨɛɡɛɭɣɠɧ ɪɣɥɭɩɞɫɛɧɧɶNext Simulation ɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɚ ɤ ɫɥɟɞɭɸɳɟɣ ɬɨɱɤɟ ɞɚɧɧɵɯ ɩɪɢ ɧɚɠɚɬɢɢData Pointɧɚ ɩɢɤɬɨɝɪɚɦɦɭ ɢ ɤɥɚɜɢɲɢ →←Next Interpolation ɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɚ ɤ ɫɥɟɞɭɸɳɟɣ ɢɧɬɟɪɩɨɥɢɪɨɜɚɧɧɨɣ ɬɨɱɤɟData Pointɧɚɠɚɬɢɢ ɧɚ ɩɢɤɬɨɝɪɚɦɦɭ ɢ ɤɥɚɜɢɲɢ →←ɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɚ ɤ ɫɥɟɞɭɸɳɟɦɭ ɩɢɤɭ, ɪɚɫɩɨɥɨɠɟɧɧɨɦɭɫɥɟɜɚ ɢɥɢ ɫɩɪɚɜɚ ɨɬ ɬɟɤɭɳɟɝɨ ɩɨɥɨɠɟɧɢɹ ɤɭɪɫɨɪɚ ɧɚɠɚɬɢɟɦPeakɤɥɚɜɢɲ →←ɫɨɨɬɜɟɬɫɬɜɟɧɧɨɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɚ ɤ ɫɥɟɞɭɸɳɟɣ ɜɩɚɞɢɧɟ, ɪɚɫɩɨɥɨɠɟɧɧɨɣɫɥɟɜɚ ɢɥɢ ɫɩɪɚɜɚ ɨɬ ɬɟɤɭɳɟɝɨ ɩɨɥɨɠɟɧɢɹ ɤɭɪɫɨɪɚ ɧɚɠɚɬɢɟɦValleyɤɥɚɜɢɲ →←ɫɨɨɬɜɟɬɫɬɜɟɧɧɨɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɚ ɧɚɠɚɬɢɟɦ ɩɢɤɬɨɝɪɚɦɦɵ ɢ ɤɥɚɜɢɲ →← ɤHighɧɚɢɛɨɥɟɟ ɜɵɫɨɤɨɣ ɬɨɱɤɟ (ɝɥɨɛɚɥɶɧɨɦɭ ɦɚɤɫɢɦɭɦɭ)ɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɚ ɧɚɠɚɬɢɟɦ ɩɢɤɬɨɝɪɚɦɦɵ ɢ ɤɥɚɜɢɲ →← ɤLowɧɚɢɛɨɥɟɟ ɧɢɡɤɨɣ ɬɨɱɤɟ (ɝɥɨɛɚɥɶɧɨɦɭ ɦɢɧɢɦɭɦɭ)ɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɚ ɤ ɫɥɟɞɭɸɳɟɣ ɬɨɱɤɟ ɩɟɪɟɝɢɛɚ (ɬɨɱɤɟ, ɜInflectionɤɨɬɨɪɨɣ 2-ɚɹ ɩɪɨɢɡɜɨɞɧɚɹ ɝɪɚɮɢɤɚ ɢɡɦɟɧɹɟɬ ɡɧɚɤ).Top (Alt+Home)Ⱥɤɬɢɜɢɡɚɰɢɹ ɝɪɚɮɢɤɚ, ɪɚɫɩɨɥɨɠɟɧɧɨɝɨ ɫɜɟɪɯɭBottom (Alt+End) Ⱥɤɬɢɜɢɡɚɰɢɹ ɝɪɚɮɢɤɚ, ɪɚɫɩɨɥɨɠɟɧɧɨɝɨ ɫɧɢɡɭɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɚ ɧɚɠɚɬɢɟɦ ɩɢɤɬɨɝɪɚɦɦɵ ɢɥɢ ɤɥɚɜɢɲ →←ɤɧɚɢɛɨɥɟɟ ɜɵɫɨɤɨɣ ɬɨɱɤɟ ɫɟɦɟɣɫɬɜɚ ɝɪɚɮɢɤɨɜ (ɧɚɢɛɨɥɟɟ ɷɮɮɟɤGlobal Highɬɢɜɧɨ ɩɪɢ ɦɧɨɝɨɜɚɪɢɚɧɬɧɨɦ ɚɧɚɥɢɡɟ ɢɥɢ ɫɬɚɬɢɫɬɢɱɟɫɤɨɦ ɚɧɚɥɢɡɟ ɩɨ ɦɟɬɨɞɭ Ɇɨɧɬɟ-Ʉɚɪɥɨ)ɉɟɪɟɦɟɳɟɧɢɟ ɤɭɪɫɨɪɚ ɧɚɠɚɬɢɟɦ ɤɥɚɜɢɲ →←ɤ ɧɚɢɛɨɥɟɟ ɧɢɡɤɨɣɬɨɱɤɟ ɫɟɦɟɣɫɬɜɚ ɝɪɚɮɢɤɨɜ (ɧɚɢɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɨ ɩɪɢ ɦɧɨɝɨɜɚGlobal Lowɪɢɚɧɬɧɨɦ ɚɧɚɥɢɡɟ ɢɥɢ ɫɬɚɬɢɫɬɢɱɟɫɤɨɦ ɚɧɚɥɢɡɟ ɩɨ ɦɟɬɨɞɭ Ɇɨɧɬɟ-Ʉɚɪɥɨ)ɉɬɭɛɦɷɨɶɠ ɥɩɧɛɨɟɶ ɧɠɨɹ SCOPEɉɪɨɫɬɚɧɨɜɤɚ ɩɚɪɚɦɟɬɪɨɜ ɝɪɚɮɢɤɨɜ ɩɪɢ ɦɧɨɝɨɜɚɪɢɚɧɬɧɨɦ ɚɧɚɥɢɡɟɉɨɦɟɬɤɚ ɬɨɱɟɤ ɫ ɡɚɞɚɧɧɵɦ ɜɪɟɦɟɧɟɦ (ɱɚɫɬɨɬɨɣ) ɜ ɪɟɠɢɦɟ TRANSIENT (AC)Ɉɬɤɪɵɬɢɟ ɞɢɚɥɨɝɨɜɨɝɨ ɨɤɧɚ Animate Options ɞɥɹ ɡɚɞɚɧɢɹ ɩɚɪɚɦɟɬɪɨɜ ɚɧɢɦɚɰɢɢ (ɡɚɦɟɞɥɟɧɢɹ ɪɚɫɱɟɬɚ ɢ ɜɵɜɨɞɚ ɝɪɚɮɢɤɨɜ)ɇɨɪɦɚɥɢɡɚɰɢɹ ɜɵɛɪɚɧɧɨɝɨ ɝɪɚɮɢɤɚ (ɞɟɥɟɧɢɟ ɜɫɟɯ ɟɝɨ ɨɪɞɢɧɚɬ Y ɧɚ ɡɧɚɱɟɧɢɟɨɪɞɢɧɚɬɵ Y ɬɨɱɤɢ ɝɪɚɮɢɤɚ, ɨɬɦɟɱɟɧɧɨɣ ɤɭɪɫɨɪɨɦ)ɉɟɪɟɦɟɳɟɧɢɟ ɥɟɜɨɝɨ ɢɥɢ ɩɪɚɜɨɝɨ ɤɭɪɫɨɪɚ ɜ ɬɨɱɤɭ ɫ ɡɚɞɚɧɧɨɣ ɤɨɨɪɞɢɧɚɬɨɣ ɩɨɨɫɢ Xɉɟɪɟɦɟɳɟɧɢɟ ɥɟɜɨɝɨ ɢɥɢ ɩɪɚɜɨɝɨ ɤɭɪɫɨɪɚ ɜ ɛɥɢɠɚɣɲɭɸ ɬɨɱɤɭ ɫ ɡɚɞɚɧɧɨɣɤɨɨɪɞɢɧɚɬɨɣ ɩɨ ɨɫɢ Yɉɟɪɟɦɟɳɟɧɢɟ ɥɟɜɨɝɨ ɢɥɢ ɩɪɚɜɨɝɨ ɤɭɪɫɨɪɚ ɜ ɬɨɱɤɭ ɫ ɡɚɞɚɧɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ,ɜɵɛɪɚɧɧɵɦɢ ɫ ɩɨɦɨɳɶɸ ɮɭɧɤɰɢɢ Performance (ɫɦ.