05-06 (1261372), страница 2
Текст из файла (страница 2)
7. Волновая ф-ция, ее статический смысл и условие, которым она должна удовлетворять. Принцип суперпозиции в квантовой механике. С движением частицы связывается волновой процесс, описываемый волновой ф-цией (r,t)= =(x,y,z,t). (r,t)=(r)(t). dp=||2dV=|(r,t)|2dxdydz – вероятность того, что частица находится в объеме dV, определяемая радиусомr. Таким образом волновая ф-ция не имеет смысла, а квадрат модуля дает плотность вероятности нахождения частицы в пр-ве. Поскольку ф-ция не имеет смысла, то она может быть комплексной: ||2dV=1 (от - до ) – условие нормировки. - нормированная, если удовлетворяется условие: |ei|2=ei, e-i=1. Требования к волновой ф-ции. =||2=*, ||2dV=1. 1) Ф-ция должна быть квадратично интегрируема или конечна. 2) ф-ция должна быть однозначна. 3) непрерывность ф-ции вместе с первыми производными. Принцип суперпозиции. d=||2dV, =c11+c22. Если частица может находится в состоянии, описываемом волновой ф-цией 1 и 2, то она может находится и в состоянии , являющейся линейной комбинацией этих состояний. =c11+c22 (с1 и с2 могут быть комплексными), |c1|2 и |c2|2 дают вероятность того, что частица находится в состоянии 1 или в состоянии 2.
9. Уравнение Шредингера, его свойства. Статическая интерпретация волновой функции.
Ур-е Шредингера – основное ур-е нерелятивистской квантовой механики, которому подчиняется любая волновая ф-ция (x,y,z,t). Частица движется в некотором силовом полеF(x,y,z,t)=gradU(x,y,z,t) то есть силовое поле задается силовой ф-цией. Нужно найти волновую ф-цию, т.е. решить ур-е Шредингера:
ih(/t)=-(h2/2m)+U(x,y,z,t), (x,y,z,t) – искомая волновая ф-ция. i=-1 – мнимая единица, h – константа планка деленная на 2, m – масса частицы, - оператор Лапласа, =2/x2+…+2/z2. =2/x2+…+2/z2 – подставим в уравнение. U – силовая ф-ция характеризует поле, в котором движется частица. Это уравнение справедливо для любой частицы, движущейся с малой скоростью. Оно дополняется условиями: 1) Волновая ф-ция должна быть конечна, однозначна, непрерывна. 2) Частные производные должны быть непрерывны. 3) Функция ||2 должна быть интегрируема.
10.Стационарные состояния, их временная зависимость. Уравнение Шредингера для стационарных состояний.
Стационарные состояния – это состояния с фиксированными значениями энергии. Это возможно, если силовое поле, в котором движется частица, стационарно, т.е. функция U=U(x,y,z) не зависит явно от времени и имеет смысл потенциальной энергии. Уравнение Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем e-iωt=e-i(E/ħ)t, так что Ψ(x,y,z,t)=ψ(x,y,z)e-i(E/ħ)t, где Е- полная энергия частицы, постоянная в случае стационарного поля. Подставляя это выражение в уравнение Шредингера((–ħ2/2m)ΔΨ+U(x,y,z,t)Ψ=iħ(∂Ψ/∂t), где ħ=h/(2π), m –масса частицы, i-мнимая единица, U-потенциальная функция частицы в силовом поле, в котором она движется
Δ-оператор Лапласа(ΔΨ=∂2Ψ/∂x2+∂2Ψ/∂y2+∂2Ψ/∂z2), Ψ(x,y,z,t)-искомая волновая функция частицы) получим:
разделив на общий множитель e-i(E/ħ)t и преобразовав придем к уравнению, определяющему функцию ψ
Δψ+(2m/ħ2)(E-U)ψ=0-уравнение Шредингера для стационарных состояний. Это уравнение имеет бесчисленное количество решений, из которых посредством наложения граничных условий отбираются решения, имеющие физич.смысл. Условия: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Т.о. реальный физич.смысл имеют только такие решения, которые выражаются регулярными функциями ψ .
11.Частица в одномерной потенциальной яме с бесконечно высокими стенками. Квантование энергии. Плотность вероятности для различных энергетических уровней.
Проведем качественный анализ решений уравнений Шредингера применительно к частице в одномерной прямоугольной потенциальной с бесконечно высокими стенками. Такая яма описывается потенциальной энергией вида(частица движется вдоль оси х):
∞,x<0 где l-ширина ямы, а энергия
U(x)0,0≤x≤l отсчитывается от ее дна
∞,x>1
Уравнение Шредингера для стационарных состояний запишется в виде: (∂2ψ/∂x2)+(2m/ħ2)(E-U)ψ=0. По условию задачи частица не проникает за пределы ямы, поэтому вероятность ее обнаружения за пределами равна 0. На границах ямы вероятность тоже обращается в 0. Следовательно, граничные условия имеют вид ψ(0)=ψ(l)=0. В пределах ямы(0≤х≤l) ур-ние Ш сведется к (∂2ψ/∂x2)+(2m/ħ2)Eψ=0 или (∂2ψ/∂x2)+k2ψ=0, где k2=2mE/ħ2.
Общее решение диф.ур-ния ψ(x)=Asinkx+BcosKx. Т.к. ψ(0)=0, то В=0. Тогда ψ(x)=Asinkx. Условие ψ(l)=Asinkl=0 выполняется только при kl=nπ, где n –целые числа, т.е. необходимо чтобы k=nπ/l
Из всего этого следует что En=(n2π2ħ2)/(2ml2) (n=1,2,3…)
Т.е. стационарное уравнение Ш, описывающее движение частицы в потенциальной яме с бесконечно высокими стенками удовлетворяется только при собственных значениях En, зависящих от целого числа n.
14.Прохождение частицы через потенциальный барьер. Туннельный эффект.
Рассмотрим простейший потенциальный барьер прямоугольной формы. Для одномерного (по оси х) движения частицы.
∞,x<0 (для области 1)
U(x)=0,0≤x≤l (для области 2)
0,x>1 (для области 3)
где l-ширина ямы, а энергия отсчитывается от ее дна, U-высота. Частица, обладая энергией Е, либо беспрепятственно пройдет над барьером( при Е>U), либо отразится от него (при Е<U) и будет двигаться в обратную сторону. Для микрочастица, даже при Е>U, имеется вероятность отражения от барьера, и при Е<U есть вероятность проникновения через барьер. Это слудет из решения ур-ния Шредингера, описывающего движение микрочастицы
для областей 1 и 3 k2=2mE/h2 ; для области 2 q2=2m(E-U)/h2
Общие решения этих диф.уравнений:
Ψ1(x)=A1eikx+B1e-ikx(для области 1);Ψ2(x)=A2eiqx+B2e-iqx(для области2) Ψ3(x)=A3eikx+B3e-ikx(для области 3).
В частности, для области 1 полная волновая, будет иметь вид ψ1(x,t)=ψ1(x)e-(i/h)Et=A1e-(i/h)(Et-px)+B1x-(i/h)(Et+px) ( в этом выражении первый член представляет собой плоскую волну вдоль х, другой – волну, распространяющаяся в обратную сторону). В области 3 есть только прошедшая сквозь барьер волна и поэтому В3=0.Для области 2 q=iβ;β=√2m(E-U) /h.
Получили Ψ1(x)=A1eikx+B1e-ikx, Ψ2(x)=A2e-βx+B2eβx ,Ψ3(x)=A3eikx
Качественный характер функций ψ1(х),ψ2(х),ψ3(х)(см.рис2), откуда следует, что волновая функция не равна нулю и внутри барьера, а в области3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т.е. с той же частотой, но с меньшей амплитудой. Т.о. приходим к явлению – туннельный эффект, когда микрочастица может пройти сквозь потенциальный барьер.
15.Уравнение Шредингера для гармонического осциллятора и анализ его решений.
Линейный гармонический осциллятор – система, совершающая одномерное движение под действием квазиупругой силы – является моделью, используемой во многих задачах классической и квантовой теории. Пружинный, физический и математический маятники – примеры классических гармонических осцилляторов. Потенциальная энергия осциллятора равна
U=mω02x2/2 где ω0- собственная частота осциллятора,m- масса частицы.
Гармонический осциллятор в квантовой механике – квантовый осциллятор – описывается уравнением Шредингера, учитывающим выражение для потенциальной энергии. Тогда стационарные состояния квантового осциллятора определяются ур-нием Шредингера вида
где Е- полная энергия осциллятора. В теории дифференциальных уравнений доказывается, что это уравнение решается только при собственных значениях энергии En=(n+½)ħω0. Эта формула показывает, что энергия квантового осциллятора может иметь только дискретные значения, т.е. квантуется. Строгое решение задачи о квантовом осцилляторе приводит еще к отличию от классического рассмотрения. Квантово-механический расчет показывает, что частицу можно обнаружить за пределами дозволенной области, в то время как с классической точки зрения она не может выйти за пределы области. Т.о. имеется отличная от нуля вероятность обнаружить частицу в области, которая является классически запрещенной.
16, 17.Представление физических величин операторами. Вычисление средних значений физических величин.
А) Оператор координаты. Действие сводится к умножению волновой функции на эту координату: x^=x, y^=y, z^=z или x^=x…
б) Оператор проекций импульса. Выражаются с помощью операторов дифференцирования по соответствующим координатам: P^x=(h/i)(/x), P^y=(h/i)(/y), P^z=(h/i)(/z),p^={ P^x, P^y, P^z}.
В) Оператор момента импульса:
L=rp, Lx=ypz-zpy; Ly=zpy-xpz; Lz=xpy-ypx;
L^x=y^p^z-z^p^y=(h/i)(y/x-z/y).
Г) Оператор кинетической энергии. Определим T, пользуясь формулой Т=p2/2m, T^=p^2/2m=-h2/2m. Вычисление средних значений: L^=L,<L>=*L^dV, (r)=Aexp(-r/a)
18.Условия возможности одновременного измерения разных величин. Соотношение неопределенностей Гейзенберга.
Гейзенберг предположил, что невозможно определить точно положение и импульс. Неопределенность положения х и рх удовлетворяют соотношению
Δx·px≥ħ/2
Δy·py≥ħ/2
Δz·pz≥ħ/2 Обозначив канонически сопряженные величины буквами А и В получим ΔА·ΔВ≥ħ/2. Производные неопределенностей значений двух сопряженных переменных не может быть по порядку величина меньше постоянной Планка ħ. Энергия и время тоже канонически сопряженные величины ΔЕ·Δt.≥ħ
19.Уравнение Шредингера для атома водорода. Квантовые числа и их физический смысл.
Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze(для атома водорода Z=1)
где r-расстояние между электроном и ядром
Состояние электрона в атоме водорода описывается волновой функцией ψ, удовлетворяющей стационарному уравнению Шредингера, учитывающие значение U(r):
m-масса электрона, Е- полная энергия электрона в атоме.