Способ образования поверхности, который представляет собой геометрическое место точек, движущихся в пространстве по некоторому законную. Поверхность рассматривается как совокупность всех последовательных положений некоторой линии – образующей, перемещающейся в пространстве по определенному закону. Линия, которую пересекают все образующие поверхности, называется направляющей. Упорядоченное множество линий, принадлежащих поверхности, называется ее каркасом. Обычно в качестве линий каркаса используют семейство образующих или семейство направляющих. -
Что называется определителем поверхности? Под определителем понимают необходимую и достаточную совокупность геометрических фигур и связей между ними, которые однозначно определяют поверхность. Определитель состоит из алгоритмической части (описывает законы изменения и перемещения фигур) и геометрической (описывает фигуры, участвующие в образовании поверхности). Обозначается Ф(Г)[A]. | -
Из каких частей состоит определитель поверхности? . Определитель состоит из алгоритмической части (описывает законы изменения и перемещения фигур) и геометрической (описывает фигуры, участвующие в образовании поверхности). Обозначается Ф(Г)[A]. -
Какие сведения содержит геометрическая часть определителя поверхности? Геометрическая часть определителя описывает фигуры, участвующие в образовании поверхности. Включает в себя две прямые: образующую m и ось I. -
Какие сведения содержит алгоритмическая часть определителя? Алгоритмическая часть определителя описывает законы изменения и перемещения фигур, выделяют ряд точек, которые вращают вокруг оси -
Какая поверхность называется линейчатой? Линейчатыми называют поверхности, которые могут быть образованы движением прямой образующей . Для задания линейчатой поверхности необходимо наличие трех направляющих для однозначного скольжения по ним одной прямолинейной образующей. | -
Какая поверхность называется поверхностью вращения? Поверхностью вращения общего вида называют поверхность, которая образована произвольной кривой (плоской или пространственной) при ее вращении вокруг неподвижной оси, где: i - ось вращения; g - образующая; p - параллель поверхности (окружность); e - экватор (параллель максимального диаметра в своей окрестности); q - горло (параллель минимального диаметра в своей окрестности); m - меридиан; m0 - главный меридиан |
-
Что называется параллелью и меридианом поверхности? Параллель- окружность, описываемая каждой точкой образующей g при ее вращении вокруг оси. Таким образом, плоскость, перпендикулярная к оси поверхности вращения, пересекает эту поверхность по окружности. Такие окружности и называются параллелями. На рис 6(выше) е-наибольшаяя параллель, q-наименьшая параллель. Плоскость, проходящую через ось поверхности вращения, называют меридиальной плоскостью. Линия пересечения поверхности вращения меридиальной плоскостью называется меридианом поверхности -
Что называется экватором и горловой окружностью (горлом) поверхности вращения? Экватор – наибольшая и параллелей. Горло поверхности – наименьшая из параллелей | -
Какие поверхности образуются при вращении прямой линии? Вращением прямой линии можно получить следующие виды поверхностей вращения: -цилиндр вращения, если образующая параллельна оси вращения -конус вращения, если образующая пересекается с осью вращения -однополостный гиперболоид вращения, если образующая скрещивается с осью вращения -
Какие поверхности образуются при вращении окружности? -сферу, если окружность вращается вокруг её диаметра -тор, если окружность вращается вокруг оси, лежащей в плоскости окружности, но не проходящей через её центр. При этом ось вращения может пересекать окружность, касаться ее и располагаться вне окружности. В первых двух случаях тор называется закрытым (рис.10.6), в последнем -открытым или кольцом | -
Какое перемещение называется винтовым? Одновременное вращательное движение вокруг некоторой оси и поступательноеотносительно этой же оси; смещение при поступательном движении пропорционально углу поворота. Таким образом, поверхность называется винтовой, если она образуется винтовым перемещением образующей (вращательное движение+поступательное). Все точки образующей описывают винтовые линии-винтовые параллели, являющиеся траекториями движения точек обраующей. Все винтовые параллели имеют одинаковый шаг -
Какие поверхности называются геликоидами? Винтовую поверхность, направляющая к которой-гелиса, называют геликоидом. Где гелиса-винтовая линия постоянного шага на поверхности кругового цилиндра. А шаг винтовой линии – перемещение точки вдоль оси i за один поворот (т.е.при повороте на 360 градусов). |
-
Какой геликоид называется прямым, а какой косым? Винтовые поверхности (геликоиды) создаются при винтовом движении образующей (прямой или кривой) вокруг оси. В зависимости от положения прямой образующей по отношению к оси различают следующие виды геликоидов: - открытый (g i) , закрытый (g i); - прямой (g i) угол фи 0 градусов , наклонный или косой (<g, i> ), угол фи не равен 0 и 90 градусов, где фи - угол наклона образующей к плоскости, перпендикулярной оси. -левый, правый -
Какой геликоид называется открытым, а какой закрытым? Если прямая l (образующая) пересекает ось вращения, то геликоид называется закрытым; если не пересекает –открытым. | -
Какая поверхность называется трубчатой, а какая циклической? Циклическая поверхность образуется окружностью переменного радиуса, центр которой перемещается по какой-либо кривой. Отметим тот случай образования циклической поверхности, когда плоскость образующей окружности остается перпендикулярной к заданной направляющей кривой, по которой движется центр окружности. Для такой поверхности встречается название канало вая. Каналовую поверхность можно представить также как огибающую семейство сфер переменного диаметра, центры которых находятся на некоторой направляющей кривой. Радиус образующей окружности или образующей сферы может быть постоянным. Поверхность, возникающая при движении такой окружности по некоторой направляющей кривой или при огибании всех последовательных положений образующей сферы при таком же движении ее центра, называется трубчатой. Примером применения в технике могут служить компенсаторы в трубопроводах. | 16) – 2 часть Направляющей кривой линией для трубчатой поверхности может быть цилиндрическая винтовая линия; в этом случае мы имеем трубчатую винтовую поверхность. Трубчатой винтовой поверхностью является поверхность цилиндрической пружины с круглым сечением витков. Циклические поверхности разного вида имеют, например, применение в газопроводах, в гидротурбинах, в центробежных насосах. Каналовая поверхность в случае, если направляющей линией взять прямую, а не кривую, превращается в поверхность вращения, в частности в коническую, а трубчатая поверхность при прямой направляющей превращается в поверхность цилиндра вращения. |
-
Признак принадлежности точки поверхности если точка принадлежит линии,лежащей в этой поверхности,то она принадлежит и самой поверхности -
Как на чертеже задать точку, принадлежащую поверхности? Ее фронтальной, горизонтальной и профильной проекцией -
Как на чертеже найти недостающую проекцию точки, принадлежащей поверхности? Дано: плоскость T(а,в) и проекция точки А2. Требуется построить проекцию А1 если известно, что точка А лежит в плоскости в,а. Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2 в точках С2 и В2. Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А. | 19) – рисунок | -
Признак принадлежности линии поверхности Линия принадлежит поверхности, если все ее точки, принадлежащие этой поверхности -
Простейшие линии на поверхности цилиндра, конуса, сферы и тора Конуса: окружность, эллипс, парабола, гипербола, треугольник Цилиндр: окружность, прямоугольник, эллипс Сферы: как бы ни была направлена секущая плоскость, она всегда рассекает сферу по окружности, которая проецируется в виде отрезка прямой, в виде эллипса или в виде окружности, в зависимости от расположения секущей плоскости относительно плоскости проекций Тора: окружности -
По каким линиям плоскость может пересечь цилиндрическую поверхность вращения? окружность, прямоугольник, эллипс -
В каком случае плоскость пересекает цилиндрическую поверхность вращения по эллипсу? Если плоскость наклонна к оси цилиндра |
-
По каким линиям плоскость может пересечь коническую поверхность вращения окружность, эллипс, парабола, гипербола, треугольник -
В каком случае плоскость пересекает коническую поверхность вращения по образующим? Если плоскость проходит через вершину конуса 26) В каком случае плоскость пересекает коническую поверхность вращения по окружности? В общем случае круговая коническая поверхность включает в себя две совершенно одинаковые полости, которые имеют общую вершину (рис. 107в). Образующие одной полости представляют собой продолжение образующих другой полости. На практике мы имеем дело не с бесконечно расширяющимися двумя полостями конической поверхности, а с телом, которое ограничено одной полостью этой поверхности и плоскостью, что является обычным круговым конусом. Бывают различные случаи сечения поверхности кругового конуса плоскостью. 1. В том случае, если секущая плоскость перпендикулярна оси конуса, получается окружность | 26) – 2 часть | 27) В каком случае плоскость пересекает коническую поверхность вращения по эллипсу? Эллипс, если секущая плоскость не параллельна ни одной образующей (рис. 107б). Здесь секущая плоскость пересекает поверхность только одной полости конуса. Угол наклона секущей плоскости по отношению к основанию конуса меньше угла, который образующая конуса составляет с основанием конуса (рис. 108б). Здесь угол является углом, который образующая составляет с основанием. 28) В каком случае плоскость пересекает коническую поверхность вращения по параболе? если секущая плоскость параллельна только одной образующей (рис. 107в). Здесь секущая плоскость не пересекает вторую полости конуса, а угол наклона v1? секущей плоскости по отношению к основанию конуса равен углу (рис. 108в). На рисунке 108в плоскость Q параллельна образующей SA, а ось параболы параллельна этой образующей. |
29) В каком случае плоскость пересекает коническую поверхность вращения по гиперболе? если секущая плоскость параллельна двум образующим (рис. 107а). При этом секущая плоскость пересекает обе полости конуса. Угол наклона секущей плоскости по отношению к основанию конуса больше угла (рис. 108а). На этом рисунке для указания двух образующих, которым параллельна секущая плоскость R, нужно провести через вершину конуса плоскость R1, которая параллельна плоскости R. Плоскость R1 должна пересечь поверхность конуса по образующим SA и SB, которым будет параллельна плоскость R. Заметим, что лишь в случае гиперболы секущая плоскость будет пересекать обе полости конуса. Значит любая плоскость, которая пересекает обе полости конуса, обязательно будет пересекать его поверхность по гиперболе. | | 30) по какой линии плоскость пересекает сферу? Любая плоскость пересекает сферу по окружности 31) какие плоскости пересекают открытый тор по окружности? Плоскости, перпендикулярные или параллельные оси вращения 32) что называют линией пересечения двух поверхностей? Это множество точек, принадлежащих одновременно обеим поверхностям. Поэтому построение линий пересечения двух плоскостей альфа и бета сводится к нахождению общих точек, принадл как поверхности альфа, так и поверхности бета 33) из каких точек состоит линия пересечения двух плоскостей?(см 32) |