ДП Старовойтов В.Е (1217717), страница 9
Текст из файла (страница 9)
Кi=
(2.3)
Гi =
(2.4)
Допустим по данным таблицы 2.3.2 удалось построить доминирующую по Гi последовательность альтернатив, показанную в таблице 2.3.3 с добавлением соответствующих дополнительных данных о потребных инвестициях DКi по всем возможным альтернативам.
На основе анализа данных таблицы 2.3.3 получаем доминирующую по мощности и инвестициям последовательность альтернатив, представляющую из себя искомую область допустимого множества альтернатив для формирования возможных стратегий этапного наращивания .
Таблица 2.3.2
Возможные альтернативы облика и мощности ВСМТУ и/или его элементов, сформированные из приведенных в таблице 2.3.1 мероприятий
| № п/п | Состав мероприятий, входящих в альтернативу | Гв , тыс. TEU | Номер для построения доминирующей по Гв последовательности |
| 1 | М0 | 500 | 1 |
| 2 | М0+М1 | 1100 | 4 |
| 3 | М0+М2 | 850 | 2 |
| 4 | М0+М3 | 900 | 3 |
| 5 | М0+М1+М2 | 1450 | 6 |
| 6 | М0+М1+М3 | 1500 | 7 |
| 7 | М0+М2+М3 | 1250 | 5 |
| 8 | М0+М1+М2+М3 | 1850 | 8 |
Таблица 2.3.3
Доминирующая последовательность альтернатив по DГв с определением по ним Кi для последующего сокращения множества альтернатив мощности ВСМТУ и/или его элементов и последующим их агрегированием
| № п/п | Состав альтернативы | Гв, тыс. TEU | DКi, млн. долл. |
| 1 | 2 | 3 | 4 |
| 1 | М0 | 500 | 0 |
| 2 | М0+М2 | 850 | 20 |
| 3 | М0+М3 | 900 | 35 |
| 4 | М0+М1 | 1100 | 40 |
| 5 | М0+М2+М3 | 1250 | 55 |
| 6 | М0+М1+М2 | 1450 | 60 |
| 7 | М0+М1+М3 | 1500 | 75 |
| 8 | М0+М1+М2+М3 | 1850 | 95 |
Таблица 2.3.4
Доминирующая по Гв (t) и К (t) последовательность ДМА изменения облика и мощности ВМТУ и/или его элементов для заданных условий и параметров
| № п/п | Состав мероприятий, образующих возможные альтернативы | Гв, тыс. TEU | К, млн. долл. |
| 1 | М0 | 500 | 0 |
| 2 | М0+М2 | 850 | 20 |
| 3 | М0+М2+М3 | 1250 | 55 |
| 4 | М0+М1+М2+М3 | 1850 | 95 |
В таблице 2.3.4 обязательно выполнение условия, что каждая последующая альтернатива имеет большую мощность, чем предыдущая.
Для формирования множества возможных стратегий развития ВСМТУ и/или его элементов используем всесторонне апробированный на железнодорожном транспорте графический способ использован в работах [39, 40] для решения локальных задач данного класса. При этом в работе [40] дано обоснование целесообразности применения данной методики для МТП. Количество стратегий, которые можно сформировать из допустимого множества альтернатив составляет 2n-2 , если учитывать, что начальное состояние существует, а конечное задано.
Рисунок 2.3.1 - Одна из возможных стратегий развития облика ВСМТУ или его элементов
Таким образом, в данном случае при ДМА = 4 альтернатив, можно сформировать 24-1 → 23 → 8 стратегий. Для оценки стратегий этапного изменения области и мощности ВСМТУ на этапе выбора
оптимальной стратегии примем критерий – суммарные строительно – эксплуатационные расходы с учетом их дисконтирования.
, (2.5)
Выбрав критерии оценки стратегий этапного изменения облика и мощности элементов ВСМТУ переходим к формированию экономико математической модели комплексного решения проблемы развития исследуемой системы.
Системное представление облика ВСМТУ, анализ технического состояния его элементов и разработанная методика формирования допустимого множества альтернатив изменения облика и мощности элементов и системы в целом, позволяют сформулировать содержательную постановку задачи выбора оптимальной стратегии их развития.
По аналогии с работой [40] содержательную постановку решаемой в настоящем исследовании задачи можно представить следующим образом:
Из множества возможных альтернатив, наметить такие их совокупности, представляющие стратегии этапного развития облика и мощности элементов и системы ВСМТУ в целом, которые позволят выбрать из них экономически эффективные для разных сценариев развития экономики региона с учетом недостаточности информации по прогнозу объемов перевозок по критерию – суммарные дисконтированные строительно – эксплуатационные расходы.
2.4. Выбор метода и разработка методики решения поставленных задач
Анализ многочисленных существующих моделей и методов проектирования развития транспортных систем и их элементов, проведенный в п. 2.1-2.3, показал, что в большинстве работ авторы для учета фактора времени решают задачу на основе применения динамического программирования.
Поддерживая эти тенденции как наиболее приемлемые с точки зрения проектирования транспортных систем в пределах заданного горизонта расчета, принимаемого в пределах 10 – 20 лет, используется для реализации заявленной цели модифицированный метод динамического программирования, который широко апробирован на железнодорожном транспорте и использован при решении проблем развития облика и мощности МТС и ее элементов МТК, МТУ. [39,40]
В работе [40] для обоснования применения данного метода отмечено: «в результате многолетней работы по совершенствованию методологии анализа освоения перевозок, выполняемой под общим руководством члена-корреспондента АН СССР проф. Горинова А.В. на кафедре «Изыскания и проектирование железных дорог» Московского института инженеров железнодорожного транспорта, проф. Турбин И.В. и проф. Кондратченко А.П., разработали метод формирования оптимальных схем этапного освоения перевозок, который позволяет при неограниченно большом числе технических состояний относительно просто выявлять для каждого расчетного случая оптимальные решения. Далее материал изложен в соответствии с первоисточником [43, 44] и его модификацией для решения проблемы изменения облика и мощности МТС. Метод основан на исследованиях, обосновавших возможность членения задачи на отдельные этапы [43, 44] и применении метода динамического программирования [45] к решению такого рода многовариантных задач».
И далее, на основе изучения работ [43,44, 45] установлено, что «в рамках реализации заявленной цели настоящего исследования требуется:
-
из неограниченного множества альтернатив выделить подмножество состояний, включаемое в оптимальную стратегию;
-
установить последовательность альтернатив во времени в выбранном подмножестве;
-
определить сроки перехода от каждой предыдущей к каждой последующей альтернативе;
-
рассчитать значение экономического критерия для оптимальной стратегии, то есть определить суммарные дисконтированные строительно-эксплуатационные расходы в пределах принятого горизонта расчета;
-
выбрать все необходимые технико-экономические данные: число альтернатив, включенных в оптимальную стратегию, их последовательность, сроки перехода и значение критерия для стратегий, которые по величине критерия незначительно отличаются от оптимальных (такие стратегии можно условно называть сопутствующими или субоптимальными)».
Метод исключает необходимость комбинаторного анализа предварительно намеченных путей наращивания мощности, в результате которого могли бы быть выбраны лучшие стратегии из числа намеченных, но обеспечивает последовательное формирование оптимальной стратегии с применением определенной вычислительной процедуры, базирующейся на динамическом программировании [45]. В процессе реализации такой процедуры производится сопоставительный анализ всех стратегий этапного освоения перевозок, которые могли бы получаться в результате разных сочетаний рассматриваемых альтернатив, и исключать заведомо нерациональные переходы и связанные с ними экономически нерациональные стратегии.
Формирование оптимальной стратегии этапного изменения облика и мощности исследуемой системы ВСМТУ следует производить в рамках принятого сценария роста объема перевозок на перспективу, то есть для фиксированного комплекса существующих параметров проектирования при определенной величине функции Гп(t).
Решение задачи начинают с назначения комплекса элементов ВСМТУ и расчетных альтернатив изменения их облика и мощности, из которых должна формироваться оптимальная стратегия освоения перевозок. При назначении таких альтернатив, можно ориентироваться на известные сферы экономической целесообразности применения различных элементов системы в работе ВСМТУ и методов организации их работы.
Методика формирования экономически эффективных стратегий изменения облика и мощности по элементам системы ВСМТУ, показанная на рисунке 2.4.1 базируется на реализации алгоритма Кеттеля при формировании доминирующего исходного и допустимого множества альтернатив по критериям инвестиций (К) и мощности (Г) и применении метода кафедры «Изыскания и проектирование железных дорог» МИИТа для формирования экономически эффективных стратегий по элементам или системе ВСМТУ в целом.
Апробация разработанной методики формирования экономически эффективных стратегий этапного развития облика и мощности элементов системы ВСМТУ для пропуска контейнерного транзита с учетом изменения прогнозов потребных объемов перевозок и построение области эффективных стратегий по методике, изложенной в третей главе диссертации будет проведена для теоретически возможных данных по объемам работы и параметрам элементов системы ВСМТУ.
Теоретическая реализация семи блоков представленного на рисунке 2.4.1 алгоритма показана в п. 2.4 настоящей главы.
Для подготовки информационной основы решения задачи формирования экономически эффективных стратегий изменения облика и мощности элементов и системы ВСМТУ в целом приведен пример по аналогии с работой [40] и рассмотрены этапы реализации методики МИИТа с использованием полученных значений Г, ti,j, Кi в п. 2.4.4.
Исходная информация, необходимая для решения задачи показана в таблицах 2.4.1, 2.4.2, 2.4.3. Реализация этапов 8 и 9 производится на основе формирования матриц Кi,jи Сi,j расчета стоимости переходов из i в j альтернативы Кi,jи эксплуатационных расходов Cij. В таблицах 2.4.1, 2.4.2 показаны фрагменты матриц для определения Кi,jи Сi,j.














