Главная » Просмотр файлов » Ответы 190 страниц

Ответы 190 страниц (1184228), страница 18

Файл №1184228 Ответы 190 страниц (Ответы 190 страниц) 18 страницаОтветы 190 страниц (1184228) страница 182020-08-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 18)

Класс MIMD чрезвычайно широк, поскольку включает в себя всевозможные мультипроцессорные системы: Cm*, C.mmp, CRAY Y-MP, Denelcor HEP,BBN Butterfly, Intel Paragon, CRAY T3D и многие другие. Интересно то, что если конвейерную обработку рассматривать как выполнение множества команд (операций ступеней конвейера) не над одиночным векторным потоком данных, а над множественным скалярным потоком, то все рассмотренные выше векторно-конвейерные компьютеры можно расположить и в данном классе.

Предложенная схема классификации вплоть до настоящего времени является самой применяемой при начальной характеристике того или иного компьютера. Если говорится, что компьютер принадлежит классу SIMD или MIMD, то сразу становится понятным базовый принцип его работы, и в некоторых случаях этого бывает достаточно. Однако видны и явные недостатки. В частности, некоторые заслуживающие внимания архитектуры, например dataflow и векторно--конвейерные машины, четко не вписываются в данную классификацию. Другой недостаток - это чрезмерная заполненность класса MIMD. Необходимо средство, более избирательно систематизирующее архитектуры, которые по Флинну попадают в один класс, но совершенно различны по числу процессоров, природе и топологии связи между ними, по способу организации памяти и, конечно же, по технологии программирования.

Наличие пустого класса (MISD) не стоит считать недостатком схемы. Такие классы, по мнению некоторых исследователей в области классификации архитектур [6,7], могут стать чрезвычайно полезными для разработки принципиально новых концепций в теории и практике построения вычислительных систем.

Масштабируемость мультипроцессорных вычислителей.

Масштабируемость представляет собой возможность наращивания числа и мощности процессоров, объемов оперативной и внешней памяти и других ресурсов вычислительной системы. Масштабируемость должна обеспечиваться архитектурой и конструкцией компьютера, а также соответствующими средствами программного обеспечения.

Так, например, возможность масштабирования кластера ограничена значением отношения скорости процессора к скорости связи, которое не должно быть слишком большим (реально это отношение для больших систем не может быть более 3-4, в противном случае не удается даже реализовать режим единого образа операционной системы). С другой стороны, последние 10 лет истории развития процессоров и коммуникаторов показывают, что разрыв в скорости между ними все увеличивается. Добавление каждого нового процессора в действительно масштабируемой системе должно давать прогнозируемое увеличение производительности и пропускной способности при приемлемых затратах. Одной из основных задач при построении масштабируемых систем является минимизация стоимости расширения компьютера и упрощение планирования. В идеале добавление процессоров к системе должно приводить к линейному росту ее производительности. Однако это не всегда так. Потери производительности могут возникать, например, при недостаточной пропускной способности шин из-за возрастания трафика между процессорами и основной памятью, а также между памятью и устройствами ввода/вывода. В действительности реальное увеличение производительности трудно оценить заранее, поскольку оно в значительной степени зависит от динамики поведения прикладных задач.

Возможность масштабирования системы определяется не только архитектурой аппаратных средств, но зависит от свойств программного обеспечения. Масштабируемость программного обеспечения затрагивает все его уровни, от простых механизмов передачи сообщений до работы с такими сложными объектами как мониторы транзакций и вся среда прикладной системы. В частности, программное обеспечение должно минимизировать трафик межпроцессорного обмена, который может препятствовать линейному росту производительности системы. Аппаратные средства (процессоры, шины и устройства ввода/вывода) являются только частью масштабируемой архитектуры, на которой программное обеспечение может обеспечить предсказуемый рост производительности. Важно понимать, что, например, простой переход на более мощный процессор может привести к перегрузке других компонентов системы. Это означает, что действительно масштабируемая система должна быть сбалансирована по всем параметрам.

Управление памятью в мультипроцессорных системах.

Системы класса: SMP (Scalable Parallel Processor) состоят из нескольких однородных процессоров и массива общей памяти (разделяемой памяти – shared memory): любой процессор может обращаться к любому элементу памяти. По этой схеме построены 2,4 процессорные SMP сервера на базе процессоров Intel, НР и т. д., причем процессоры подключены к памяти с помощью общей шины. Системы с большим числом процессоров (но не более 32) подключаются к общей памяти, разделенной на блоки, через не блокирующийся полный коммутатор: crossbar. Любой процессор системы получает данное по произвольному адресу памяти за одинаковое время, такая структура памяти называется: UMA - Uniform Memory Access (Architecture). Пример:НР-9000. Дальнейшее масштабирование (увеличение числа процессоров системы) SMP систем обеспечивается переходом к архитектуре памяти: NUMA - Nоn Uniform Memory Access. По схеме, называемой, этой иногда, кластеризацией SMP, соответствующие блоки памяти двух (или более) серверов соединяются кольцевой связью, обычно по GCI интерфейсу. При запросе данного, расположенного вне локального с сервере диапазона адресов, это данное по кольцевой связи переписывается дублируется в соответствующий блок локальной памяти, ту часть его, которая специально отводится для буферизации глобальных данных и из этого буфера поставляется потребителю. Эта буферизация прозрачна (невидима) пользователю, для которого вся память кластера имеет сквозную нумерацию, и время выборки данных, не локальных в сервере, будет равно времени выборки локальных данных при повторных обращениях к глобальному данному, когда оно уже переписано в буфер. Данный аппарат буферизации есть типичная схема кэш памяти. Так как к данным возможно обращение из любого процессора кластера, то буферизация, размножение данных требует обеспечение их когерентности. Когерентность данных состоит в том, что при изменении данного все его потребители должны получать это значение. Проблема когерентности усложняется дублированием данных еще и в процессорных кэшах системы. Системы, в которых обеспечена когерентность данных, буферизуемых в кэшах, называются кэш когерентными (cc-cache coherent), а архитектура памяти описываемого кластера: cc- NUMA (cache coherent Nоn Uniform Memory Access). Классической архитектурой принято считать систему SPP1000.

Не уверен, что это нужно…

Распределенная общая память (DSM - Distributed Shared Memory)

Традиционно распределенные вычисления базируются на модели передачи сообщений, в которой данные передаются от процессора к процессору в виде сообщений. Удаленный вызов процедур фактически является той же самой моделью (или очень близкой).

DSM - виртуальное адресное пространство, разделяемое всеми узлами (процессорами) распределенной системы. Программы получают доступ к данным в DSM примерно так же, как они работают с данными в виртуальной памяти традиционных ЭВМ. В системах с DSM данные перемещаются между локальными памятями разных компьютеров аналогично тому, как они перемещаются между оперативной и внешней памятью одного компьютера.

6.1 Достоинства DSM

В модели передачи сообщений программист обеспечивает доступ к разделяемым данным посредством явных операций посылки и приема сообщений. При этом приходится квантовать алгоритм, обеспечивать своевременную смену информации в буферах, преобразовывать индексы массивов. Все это сильно усложняет программирование и отладку. DSM скрывает от программиста пересылку данных и обеспечивает ему абстракцию разделяемой памяти, к использованию которой он уже привык на мультипроцессорах. Программирование и отладка с использованием DSM гораздо проще.

В модели передачи сообщений данные перемещаются между двумя различными адресными пространствами. Это делает очень трудным передачу сложных структур данных между процессами. Более того, передача данных по ссылке и передача структур данных, содержащих указатели, является в общем случае делом сложным и дорогостоящим. DSM же позволяет передавать данные по ссылке, что упрощает разработку распределенных приложений.

Объем суммарной физической памяти всех узлов может быть огромным. Эта огромная память становится доступна приложению без издержек, связанных в традиционных системах с дисковыми обменами. Это достоинство становится все весомее в связи с тем, что скорости процессоров растут быстрее скоростей памяти и в то же время появляются очень быстрые коммуникации.

DSM-системы могут наращиваться практически беспредельно в отличие от систем с разделяемой памятью, т.е. являются масштабируемыми.

Программы, написанные для мультипроцессоров с общей памятью, могут в принципе без каких-либо изменений выполняться на DSM-системах (по крайней мере, они могут быть легко перенесены на DSM-системы).По существу, DSM-системы преодолевают архитектурные ограничения мультипроцессоров и сокращают усилия, необходимые для написания программ для распределенных систем. Обычно они реализуются программно-аппаратными средствами, но в последние годы появилось несколько коммерческих MPP с DSM, реализованной аппаратно (Convex SPP, KSR1).

6.2 Алгоритмы реализации DSM

При реализации DSM центральными являются следующие вопросы. как поддерживать информацию о расположении удаленных данных. как снизить при доступе к удаленным данным коммуникационные задержки и большие накладные расходы, связанные с выполнением коммуникационных протоколов. как сделать разделяемые данные доступными одновременно на нескольких узлах для того, чтобы повысить производительность системы.

Рассмотрим четыре основных алгоритма реализации DSM.

6.2.1 Алгоритм с центральным сервером

Все разделяемые данные поддерживает центральный сервер. Он возвращает данные клиентам по их запросам на чтение, по запросам на запись он корректирует данные и посылает клиентам в ответ квитанции. Клиенты могут использовать тайм-аут для посылки повторных запросов при отсутствии ответа сервера. Дубликаты запросов на запись могут распознаваться путем нумерации запросов. Если несколько повторных обращений к серверу остались без ответа, приложение получит отрицательный код ответа (это обеспечит клиент).

Алгоритм прост в реализации, но сервер может стать узким местом.

Чтобы избежать этого, разделяемые данные могут быть распределены между несколькими серверами. В этом случае клиент должен уметь определять, к какому серверу надо обращаться при каждом доступе к разделяемой переменной. Посылка запросов сразу всем серверам нежелательна, поскольку не снижает нагрузку на серверы. Лучшее решение - распределить данные в зависимости от их адресов и использовать функцию отображения для определения нужного сервера.

6.2.2 Миграционный алгоритм

В отличие от предыдущего алгоритма, когда запрос к данным направлялся в место их расположения, в этом алгоритме меняется расположение данных - они перемещаются в то место, где потребовались. Это позволяет последовательные обращения к данным осуществлять локально. Миграционный алгоритм позволяет обращаться к одному элементу данных в любой момент времени только одному узлу.

Обычно мигрирует целиком страницы или блоки данных, а не запрашиваемые единицы данных. Это позволяет воспользоваться присущей приложениям локальностью доступа к данным для снижения стоимости миграции. Однако, такой подход приводит к трэшингу, когда страницы очень часто мигрируют между узлами при малом количестве обслуживаемых запросов. Некоторые системы позволяют задать время, в течение которого страница насильно удерживается в узле для того, чтобы успеть выполнить несколько обращений к ней до миграции ее в другой узел.

Миграционный алгоритм позволяет интегрировать DSM с виртуальной памятью, обеспечивающейся операционной системой в отдельных узлах. Если размер страницы DSM совпадает с размером страницы виртуальной памяти (или кратен ей), то можно обращаться к разделяемой памяти обычными машинными командами, воспользовавшись аппаратными средствами проверки наличия в оперативной памяти требуемой страницы и замены виртуального адреса на физический. Конечно, для этого виртуальное адресное пространство процессоров должно быть достаточно, чтобы адресовать всю разделяемую память. При этом, несколько процессов в одном узле могут разделять одну и ту же страницу.

Для определения места расположения блоков данных миграционный алгоритм может использовать сервер, отслеживающий перемещения блоков, либо воспользоваться механизмом подсказок в каждом узле. Возможна и широковещательная рассылка запросов.

6.2.3 Алгоритм размножения для чтения

Предыдущий алгоритм позволял обращаться к разделяемым данным в любой момент времени только процессам в одном узле (в котором эти данные находятся). Данный алгоритм расширяет миграционный алгоритм механизмом размножения блоков данных, позволяя либо многим узлам иметь возможность одновременного доступа по чтению, либо одному узлу иметь возможность читать и писать данные (протокол многих читателей и одного писателя). Производительность повышается за счет возможности одновременного доступа по чтению, но запись требует серьезных затрат для уничтожения всех устаревших копий блока данных или их коррекции.

При использовании такого алгоритма требуется отслеживать расположение всех блоков данных и их копий. Например, каждый собственник блока может отслеживать расположение его копий.

Данный алгоритм может снизить среднюю стоимость доступа по чтению тогда, когда количество чтений значительно превышает количество записей.

6.2.4 Алгоритм полного размножения

Этот алгоритм является расширением предыдущего алгоритма. Он позволяет многим узлам иметь одновременный доступ к разделяемым данным на чтение и запись (протокол многих читателей и многих писателей). Поскольку много узлов могут писать данные параллельно, требуется для поддержания согласованности данных контролировать доступ к ним.

Характеристики

Тип файла
Документ
Размер
1,72 Mb
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее