Белов- БЖД (1183106), страница 61
Текст из файла (страница 61)
Р и с . 6 37 Наружные покрытия:
о –жесткое; б – жесткое с прокладкой; 1 –вибрирующая пластина; 2–вибропоглощающий материал; 3–прокладка
Конструкционные материалы с большим внутренним трением обычно создаются искусственно. В специальных сплавах коэффициент потерь может достигать значений 10-1...2-10-2: сплавы магния –0,3; сплавы меди –0,2; хайдаметы (сплавы Ni –Со, Со –Ti, Си – Ni)–0,15; сплавы марганца 0,01–0,06; у капрона и текстолита коэффициент потерь соответственно равен 0,4 и 0,35. В качестве конструкционных материалов используют также высокомолекулярные соединения, у которых коэффициент потерь имеет порядок 10-2. Для полимеров типична сильная зависимость коэффициента потерь от температуры и частоты.
Перспективным в вибропоглощении является нанесение на колеблющиеся поверхности элементов конструкции высокоэффективных вибропоглощающих материалов. Они могут изготовляться на основе меди, свинца, олова, битумов и других материалов. Большое распространение получила многокомпонентная система на основе полимера, способного рассеивать механическую энергию в большом количестве при основных деформациях: растяжении, изгибе, сдвиге. Из других компонентов полимерной системы главными являются пластификаторы и наполнители. Пластификаторы (низкомолекулярные труднолетучие вещества, например, сложные эфиры, некоторые парафины и масла) придают полимеру требуемое сочетание свойств эластичности и пластичности. Наполнители (сажа, графит, слюда и др.) сообщают материалу необходимые эксплуатационные свойства; они могут, например, повысить его прочность, облегчить обработку, снизить сто-имость и т. д. Вибропоглощающий материал выпускается промышленностью в отвержденном в виде листов и мастичном состояниях.
Листовой материал приклеивается к вибрирующей поверхности; мастику наносят методом штапелирования или напыления. В большинстве случаев вибропоглощающим материалом демпфируют изгибные колебания конструкций типа пластин. При жестком наружном покрытии (рис. 6.37, а) поверхность 7 пластины накрывается слоем жесткого вибропоглощающего материала 2. Такое покрытие рассеивает энергию колебаний при своих продольных деформациях, имеющих характер растяжений–сжатий. Коэффициент потерь конструкции, демпфированной жестким покрытием:
где E21=E2/E1 и h21=h2/h1 –отношения соответственно модулей упругости и толщины (рис. 6.37, д), n3 – коэффициент потерь материала покрытия.
Жесткое наружное покрытие с прокладкой имеет повышенный по сравнению с предыдущим коэффициент потерь, так как между слоем вибропоглощающего материала и пластиной расположен слой легкого жесткого полимера (например, пенопласта) (рис. 6.37, б). Он удаляет вибропоглощающий материал от нейтральной плоскости (не испытывающей деформаций при изгибе), при этом увеличивается его виброскорость, возрастает деформация растяжения и, следовательно, увеличиваются потери энергии в покрытии. С увеличением частоты покрытие эффективно работает до тех пор, пока в прокладке не возникнут деформации сдвига. При возникновении последних прокладка перестает эффективно передавать на вибропоглощающий слой растягивающие усилия от изгибов пластины.
Кроме жестких покрытий применяют также: армированные покрытия, когда на слой вибропоглощающего материала наносится тонкий слой другого материала (обычно металла), который упрочняет, усиливает или защищает вибропоглощающий слой; слоистые покрытия, когда толщина упрочняющего металлического слоя близка к толщине пластины; и мягкие наружные покрытия, которые представляют собой слой вибропоглощающего материала, легко сжимаемого по толщине и рассеивающего энергию изгибных колебаний в результате деформаций в поперечном направлении. В рассмотренных жестких покрытиях коэффициент потерь зависит от частоты. При этом его наибольшие значения приходятся на область низких –средних частот.
Эффективность вибропоглощения
где Lη и Lη+. – уровни рассеиваемой энергии до и после осуществления вибропоглощающих мероприятий.
Чтобы учесть рассеивание энергии вследствие применения конструкционных материалов, введем сквозную нумерацию слоев: материал, на который наносится вибропоглощающий слой, назовем нулевым слоем; над нулевым слоем располагается первый слой, над первым – второй и т. д. Тогда, пользуясь формулой (6.8), запишем
где εi, и ηi–соответственно максимальная потенциальная энергия и коэффициент потерь i-го слоя; п –число слоев.
6.6.3. Защита от шума, электромагнитных полей и излучений
Уровень интенсивности в свободном волновом поле.
Уравнение плоской волны, не затухающей с расстоянием, в комплексной форме имеет вид
U=umej(wt-kr)
здесь um = umjфu – комплексная амплитуда; r – радиус-вектор рассматриваемой точки; k –волновой вектор, численно равный волновому числу
k=w/c=2π/λ
где с λ – соответственно скорость распространения и длина волны.
Распространение волны всегда связано с переносом энергии, которая количественно характеризуется мгновенным вектором плотности потока энергии It. На практике обычно пользуются понятием интенсивности волны I, которая равна модулю среднего значения вектора It за время, равное периоду T полного колебания. Найдем интенсивности звука и электромагнитной волны. Для этого введем понятие импеданса среды при распространении волны.
Комплексным импедансом среды при распространении звуковой волны назовем отношение
где р и v – соответственно звуковое давление и колебательная скорость.
Комплексным импедансом среды при распространении электромагнитной волны назовем отношение поперечных составляющих электрического (Е) и магнитного (Н) полей в данной точке:
z=E/H
Положив u=p для звука и u=E для электромагнитного поля, можно для определения интенсивности звуковой волны или для определения интенсивности электромагнитной волны использовать одну и ту же формулу*:
i-^^-^-^^ w
где
Эффективное значение величины u
При заданных стандартом референтных значениях. I*U*Z* удовлетворяющих условию I* = U*/Z* из соотношения (6.25) следует
LI=LU+LZ
**Числовые значения референтных величин различны для звука и ЭМП.
LI=101gI/I*, *(6.26)–
где LU=201guэф/Г*Г; LZ=101gz/z* уровни величин I,U,Z. Суммарная интенсивность некогерентных источников
Следовательно, уровень суммарной интенсивности
где Lit, и п – соответственно уровень интенсивности i-го источника и число источников. Если все п источников имеют одинаковый уровень интенсивности, равный Lt, то уровень суммарной интенсивности будет равен
LIE=LI+101gn
Источники направленного действия характеризуют коэффициентом направленности, равным отношению:
Ф=I/IH
где I–интенсивность волны в данном направлении на некотором расстоянии r от источника направленного действия мощностью W, излучающего волновое поле в телесный угол Ω; Iн= W/(4πr2) –интенсивность волны на том ж е расстоянии при замене данного источника на источник ненаправленного действия той же мощности. В общем случае в сферической системе координат, характеризуемой углами ø и φ, коэффициент направленности φ= φ(ø). Для осесимметричных источников коэффициент направленности не зависит от координаты ф и ф=ф(ø). Таким образом, интенсивность можно выразить через мощность источника следующим образом:
При необходимости учесть затухание в уравнение (6.23) вводят вместо волнового числа k комплексное волновое число fc, или коэффициент распространения k:
где γ и δ – соответственно коэффициент фазы и коэффициент затухания. Амплитуда затухающей волны будет равна um(δ) = umeδr a интенсивность волны будет затухать по закону:
На расстоянии r затухание в децибеллах
где δо = 8,686δ – коэффициент затухания, выраженный в децибелах на единицу длины.
Полагая Wx =I*Se из выражения (6.28) находим уровень интенсивности с учетом затухания:
где Se и Lw=101gW/W* –соответственно единичная площадь и уровень мощности относительно референтного значения W*:
Таким образом, уровень интенсивности в данной точке определяется через уровень мощности и коэффициент направленности. Формула (6.29) справедлива в свободном волновом поле, т. е. поле, не имеющем границ, от которых могло бы происходить отражение волн. Свободное поле можно создать и в помещении, если сделать последнее из материала, полностью поглощающего энергию падающей волны. Величину 101gф называют показателем направленности и обозначают ПН.
Таблица 6.7. Коэффициент затухания звука в воздухе, дБ/км
Относительная влажность возду- | Среднегеометрические частоты октавных полос, Гц | ||||||
ха,% | |||||||
125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | |
10 | 0.8 | 1,5 | 3,8 | 12,1 | 40 | 109 | 196 |
40 | 0,4 | 1,3 | 2,8 | 4,9 | 11 | 34 | 120 |
80 | 0,2 | 0,9 | 2,7 | 5,5 | 9,7 | 21 | 66 |
Для звука коэффициент затухания δо зависит от частоты звука, температуры, давления и относительной влажности воздуха. При нормальном атмосферном давлении и температуре воздуха, равной +20 °С , значения коэффициента δо даны в табл. 6.7. Для электромагнитной волны, распространяющейся в воздухе, δо≈0 (см. ниже). Следует иметь в виду, что в реальных условиях уровень затухания зависит также от погодных условий (дождь, снег, туман и т. д.), наличия растительности (трава, кустарник, деревья и т. д.), состояния атмосферы (ветер, туман, турбулентность, температурные градиенты и т. д.), наличия отражающих поверхностей (земля, преграды, экраны и т. д.) и ряда других факторов и вычисляется по формуле где eS(i) – уровень