josab-18-8-1174 (1179840), страница 3
Текст из файла (страница 3)
Phys. 3, 43–76 (1931).L. A. MacColl, ‘‘Note on the transmission and reflection ofwave packets by potential barriers,’’ Phys. Rev. 40, 621–626(1932).T. E. Hartman, ‘‘Tunneling of a wave packet,’’ J. Appl. Phys.33, 3427–3433 (1962).M. Büttiker and R. Landauer, ‘‘Traversal time for tunneling,’’ Phys. Rev. Lett. 49, 1739–1742 (1982).For a review, see R. Y. Chiao and A. M. Steinberg, ‘‘Tunneling times and superluminality,’’ in Prog.
Opt. 37, 345–405(1997).G. Nimtz and W. Heitmann, ‘‘Superluminal photonic tunneling and quantum electronics,’’ Prog. Quantum Electron.21, 81–107 (1997).J. M. Deutch and F. E. Low, ‘‘Barrier penetration and superluminal velocity,’’ Ann. Phys. (N.Y.) 228, 184–202 (1993).K. Hass and P. Busch, ‘‘Causality of superluminal barriertraversal,’’ Phys. Lett. A 185, 9–13 (1994).Y.
Japha and G. Kurizki, ‘‘Superluminal delays of coherentpulses in nondissipative media: a universal mechanism,’’Phys. Rev. A 53, 586–590 (1996).G. Diener, ‘‘Superluminal group velocities and informationtransfer,’’ Phys. Lett. A 223, 327–331 (1996).F. T. Smith, ‘‘Lifetime matrix in collision theory,’’ Phys. Rev.118, 349–356 (1960).When Eq. (1) is applied to the electromagnetic problem, thephysical meaning of here as being the energy density isdifferent from that proposed by Steinberg and Chiao in A.M. Steinberg and R. Y. Chiao, ‘‘Tunneling delay times in oneand two dimensions,’’ Phys. Rev. A 49, 3283–3295 (1994).The key point is that, within the barrier, the magnetic energy density ( 0 /4) 兩 H 兩 2 of the electromagnetic field is neither equal nor proportional to its electric energy density( ⑀ 0 /4) 兩 E 兩 2 .E.
H. Hauge and J. A. Støvneng, ‘‘Tunneling times: a critical review,’’ Rev. Mod. Phys. 61, 917–935 (1989).D. Bohm, Quantum Theory (Prentice-Hall, EnglewoodCliffs, N.J., 1951), p. 240.C. K. Carniglia and L. Mandel, ‘‘Phase shift measurementof evanescent electromagnetic waves,’’ J. Opt. Soc. Am. 61,1035–1043 (1971).C. K. Carniglia and L. Mandel, ‘‘Differential phase shifts ofTE and TM evanescent waves,’’ J.
Opt. Soc. Am. 61, 1423–1424 (1971).A. M. Steinberg and R. Y. Chiao, ‘‘Tunneling delay times inone and two dimensions,’’ Phys. Rev. A 49, 3283–3295(1994).Ph. Balcou and L. Dutriaux, ‘‘Dual optical tunneling timesChun-Fang Li and Qi Wang19.20.21.in frustrated total internal reflection,’’ Phys. Rev. Lett. 78,851–854 (1997).B. Lee and W. Lee, ‘‘TM-polarized photon tunneling phasetime in a frustrated-total-internal-reflection structure,’’ J.Opt. Soc. Am. B 14, 777–781 (1997).G. Diener, ‘‘Energy transport in dispersive media and superluminal group velocities,’’ Phys. Lett.
A 235, 118–124(1997).W. R. McKinnon and C. R. Leavens, ‘‘Distributions of delaytimes and transmission times in Bohm’s causal interpreta-Vol. 18, No. 8 / August 2001 / J. Opt. Soc. Am. B22.23.24.1179tion of quantum mechanics,’’ Phys. Rev. A 51, 2748–2757(1995).C. R. Leavens, ‘‘Time of arrival in quantum and Bohmianmechanics,’’ Phys. Rev. A 58, 840–847 (1998).D. Bohm, ‘‘A suggested interpretation of the quantumtheory in terms of ‘‘hidden’’ variables,’’ Phys. Rev. 85, 166–193 (1952).D.
Bohm, B. J. Hiley, and P. N. Kaloyerou, ‘‘An ontologicalbasis for the quantum theory,’’ Phys. Rep. 144, 321–375(1987)..