И.О. Арушунян - Конспект лекций (1160471), страница 11
Текст из файла (страница 11)
(x̄, t̄) : a(x̄, t̄) - çàìîðàæèâàåì a(., .).1τÑõåìà óñòîé÷èâà, åñëè 2 ≤h2a(x̄, t̄)Âàðüèðóÿ ò. (x̄, t̄), ïîëó÷èì:τ1≤.2h2 max a(x̄, t̄)(x̄,t̄)93Åñëè óðàâíåíèå ÿâëÿåòñÿ íåëèíåéíûì∂∂u+(ϕ(x, t, u)) = ψ(x, t, u)∂t∂xð. ñõåìà:(∗∗)nϕ(mh, nτ, unm ) − ϕ((m − 1)h, τ, unm−1 )un+1m − um+= ψ(mh, nτ, unm )τhÏóñòü unm - ðåø. (∗∗)nn− ìàëàÿ âàðèàöèÿ, âîçìóùåíèå= unm + δmvm|{z}nïîäñòàâèì âîçìóùåííîå vmâ (∗∗):(∗ ∗ ∗)n+1nvm− vm+ ...τ(∗∗) − (∗ ∗ ∗) è âñå ëèíåàðèçóåì, ⇒ ïîëó÷èìnnn+1nϕ0 (mh, nτ, unm )δm− ϕ0u ((m − 1)h, τ, unm−1 )δm−1δm− δmn+ u= ψu0 (mh, nτ, unm )δmτhn- ð. óð-íèå, ëèí. îòíîñ. δmnnÇàìîðàæèâàåì ϕ0u (.) ïðè δmè ϕ0u (.) ïðè δm−1â êàêîé-òî òî÷êå è ò.ï.23Ëåêöèÿ 23(10).11.04.05×èñëåííûå ìåòîäû ðåøåíèÿ ýëëèïòè÷åñêèõ êðàåâûõ çàäà÷ 2µ¶ X ∂ a (x) ∂u = f (x),x∈Ω ,ij∂x∂xijx=(x1 , x2 ) i,j=1u|∂Ω = 0Îïðåäåëåíèå: Çàäà÷à íàçûâàåòñÿ ýëëèïòè÷åñêîé, åñëè ∃ c1 , c2 > 0 : ∀ t1 , t2 è x ∈ Ωâûïîëíÿåòñÿ2XXX2aij ti tj ≤ c2t2i .c1ti ≤ii,j=1iÁóäåì ðàññìàòðèâàòü Ω - ïðÿìîóãîëüíèê, aij = δjiy(≡ x2 )6l2-0l1x(≡ x1 )∂ 2u ∂ 2u−= f (x1 , x2 )∂x21 ∂x22u|Γ = α(x1 , x2 ) − çàäàíî−94- Çàäà÷à Äèðèõëå äëÿ îïåðàòîðà Ëàïëàñà.h1 = l1 /N1 , h2 = l2 /N2 , N1 , N2 - çàäàíû½Lh uh = fh , x ∈ Ωhuh = αh , x ∈ ΓhΩh - âíóòðåííèå òî÷êè ñåòêè (âñåãî (N1 − 1)(N2 − 1))Γh - ãðàíè÷íûå.•(m, n + 1)Øàáëîí:•(m − 1, n)•(m, n)•(m + 1, n) ;uh (mh1 , nh2 ) = umn :•(m, n − 1)−um−1,n + 2um,n − um+1,n −um,n−1 + 2um,n − um,n+1+= fmnh21h22 u =α0n0n(∗)uN1 n = αN1 num0 = αm0 uα − çàäàíûmN2 = αmN2Ýòà çàäà÷à àïïðîêñèìèðóåò íàøó ñ ïîðÿäêîì O(h21 + h22 ).Óñòðîé÷èâîñòü - äàëåå.−um−1,n + 2um,n − um+1,n −um,n−1 + 2um,n − um,n+1Îáîçíà÷èì: ∆h uh =+h21h22½−∆h uh = fh , x ∈ Ωhuh |Γ h = α hËåììà1: vh - îïðåäåëåíà íà Ω̄h è ∆h vh ≥ 0⇒ max vh äîñòèãàåòñÿ íà ãðàíèöå.Ω̄h⇒Ä-âî: ïóñòü max äîñòèãàåòñÿ â Ωh : â ò.
(m, n) è m íàèáîëüø. èç âîçìîæíûõvm,n > vm+1,nkmax vh≤0<0∆h vh = ((vm−1,n − vm,n ) + (vm+1 − vm,n ))/h21 + ((vm,n−1 − vm,n ) + (vm,n+1 − vm,n ))/h22 < 0≤0- ïðîòèâîðå÷èåËåììà2: ∆h vh ≤ 0 ⇒ min vh äîñòèãàåòñÿ íà Γh .Òåîðåìà: ∆h vmn = 0, m = 1, N1 − 1; n = 1, N2 − 1;⇒ max |vmn | äîñòèãàåòñÿ íà Γh .⇒ åäèíñòâåííîñòü ðåøåíèÿ ñèñòåìû (∗) íàøåé çàäà÷å õîòèì äîêàçàòü:kuh kh ≤ C1 (kfh kh + kαh kh )95≤0¤√2B Óïðîñòèì æèçíü: l1 = l2 = 1, h1 , h2 - ðàçíûå. R := diam(Ω), R =.21Ðàññìîòðèì Q(x1 , x2 ) = (R2 − (x1 − 1/2)2 − (x2 − 1/2)2 )kfh kh + kαh kh .4kfh kh = max |fh |dfΩhm = 1, N1 − 1n = 1, N2 − 1⇒ ∆h Qmn = −kfh k,uh − Qðåø.(∗)∆h vh = −fh + kfh kh ≥ 0vh äîñòèã.
max íà Γh:= uh + Q∆h wh = −fh − kfh kh ≤ 0vh :=↑⇒⇒wh⇒1vh |_Γh = αh − kαh kh − (R2 − (x1 − 1/2)2 − ...) kfh kh ≤ 0{z} |4|{z}≤0≥0⇒ vh ≤ 0 â Ωh⇒ uh − Q ≤ 0, ⇒àíàëîãè÷íî¾uh ≤ Q⇒ |uh | ≤ |Qh |uh ≥ −QR2⇒ kuh k ≤ kQk ≤ kαh k +· kfh k = kαh k + kfh k4Ñõîäèìîñòü:½−∆u = f , x ∈ Ωu|Γ = α½−∆h uh = fh , x ∈ Ωhuh |Γh = αhC(1)/àïïðîêñèìàöèÿ + óñòîé÷èâîñòü ⇒ ñõîäèìîñòü/zh := [u]h − uhzm,n = u(mh1 , nh2 ) − umn½½(2) − (1) ⇒−∆h [u]h = fh + γh , x ∈ Ωh[u]h |Γh = αh−∆h zh = γhzh |Γh = αh(2)⇒ kzh k ≤ kγh k = O(h21 + h22 ) ⇒ ñõîäèìîñòüÐàçíîñòíàÿ ñõåìà ñ ïîðÿäêîì àïïðîêñèìàöèè h4δ12 umn δ22 umn+h21h22¯¯∂ 2 u ¯¯h2k ∂ 4 u ¯¯=++ O(h4k )∂x2k ¯(m,n) 12 ∂x4k ¯(m,n)∆h umn =¯δk2 u ¯¯h2k ¯(m,n)96(3)Ïðîäèôôåðåíöèðóåì íàøå óðàâíåíèå:∂ 2 f ïîäñò∂4u∂ 4u=−−→ (3)∂x41∂x21 ∂x22 ∂x21¯¯µ¶¯δ12 u ¯¯∂ 2 u ¯¯h21 δ12 δ22 u δ12 f ¯¯=−+ O(h41 + h42 )+ 2 ¯2 ¯2¯2 2h1 (m,n)∂x1 (m,n) 12 h1 h2h1 (m,n)∂2uδ22 u ∂ 2δ12 (.)=;(.)=(ñì.
Áàõâàëîâ,...)∂x22h22 ∂x21h21½−∆u = fu|Γ = αÐàçíîñòíàÿ ñõåìà:h2 + h22 δ12 δ221u = fmn + (δ12 fmn + δ22 fmn ) −∆h umn − 12 2 mn12 h1 h2121,Nm=1 − 1; n = 1, N2 − 1umn |Γh = αh24(∗∗)Ëåêöèÿ 24(11) (ïîñëåäíÿÿ).18.04.05∂ 2u ∂ 2u−= f (x, y), (x, y) ∈ Ω∂x2 ∂y 2u|Γ = α(x, y)−Ω = (0, 1) × (0, 1), h1 = h2 =1, α(x, y) := 0NBv̄ = f¯ = f (x, y) − â óçëàõ ñåòêèvij − êîìï-ò â-ðà v̄−vi+1,j − vi−1,j + 4vi,j − vi,j+1 − vi,j−1= fij , i, j = 1, N − 1h2äî 5 íåíóë.
êîýôô. â êàæä. óð.Ïåðåíóìåð: v11 , v12 , ..., v1N −1 , v21 , ..., v2N −1 , ...↓↓↓↓↓v1 v2vN −1 vNv2N −2−vN + 4v1 − v2= f11Â (∗) 1-å óðàâíåíèå:h297(∗)4 −1 . . . −14 −1.. ....0 . . . −1 −10 ...0 −1 01 ..B= 2.h 0 ...00......−10 ...00 −1 0 . . ....40...0 ...4 −1 . . .−14 −1.. ....0 . . . −1−10 ...0 −1 0...−10......0 ...···−1−1···40...0−10 ...00 −1 0 . . ....0 ...−14 −1 . . . 0−14 −1 . . ... .. .....0 . . . −1 4···Áëîêè (N − 1) × (N − 1).
Íåèçâåñòíûõ: O(N 2 ).Åñëè èñïîëüçîâàòü ìåòîä Ãàóññà: çàòðàòû O(N 3 ) - íà õðàíåíèå B ,̈_4Ãàóññà äëÿ ëåíòî÷íûõ ìàòðèö O(N ).Bv = f , v - îïðåäåëåíà íà âñåõ óçëàõ, íî íà Γ = 0 , v|Γ = 0B = Λ1 + Λ2 , ãäå−vi+1,j + 2vi,j − vi−1,jΛ1 v|(i,j) =h21−vi,j+1 + 2vi,j − vi,j−1Λ2 v|(i,j) =h2212Ñêàëÿðíîå ïðîèçâåäåíèå: (v , v ) =N1 −1 N2 −1XXi=1vij = v(ih1 , jh2 )Ðàññìîòðèì ek1 ,k2 (ih1 , jh2 ) :=··· ··· ··· ···?, íà ì-ävij1 vij2 h1 h2j=1k1 πik2 πj2sinsin, i = 1, N1 − 1, j = 1, N2 − 1, k1 =l1 l2N1N21, N1 − 1, k2 = 1, N2 − 1Óòâåðæäåíèå: ýòè ô. îáðàç. ïîëíóþ îðòîíîðì. ñèñ.
ñî ñêàë. ïðîèçâåä., ââåä. âûøå.ek1 k2 - ñ.ô. îïåðà B :Bek1 k2 = λk1 k2 ek1 k244k1 πh1k2 πh2+ 2 sin2λk1 k2 = 2 sin2h12l1h22l2(ïðîâåðÿåòñÿ ïîäñòàíîâêîé:))Ìåòîä Ôóðüåv(ih1 , jh2 ) =N1 −1 N2 −1XXk1 =1 k2 =198v̂k1 k2 ek1 k2 (ih1 , jh2 )|{z}èùåìÇàòðàòû ∼ O(N 4 ) (N 2 ôóíêöèé, çàäàííûõ â N 2 òî÷êàõ)v̂k1 k2 = (v, ek1 k2 )Àíàëîãè÷íîN1 −1 N2 −1XXf (ih1 , jh2 ) =fˆk1 k2 ek1 k2 (ih1 , jh2 )i=1j=1→ Bv = f → ïîäñò:XXiλk1 k2 v̂k1 k2 ek1 k2 (ih1 , jh2 ) =XXjijk = 1, N1 − 1,fˆk1 k2 ek1 k2 (ih1 , jh2 ) , 1k2 = 1, N2 − 1⇒ λk1 k2 v̂k1 k2 = fˆk1 k2 , ò.ê. îðòîíîðìèð.fˆk1 k2 = (f, ek1 k2 ) ⇒ íàõîäèì v̂k1 k2Ïîñëåäîâàòåëüíîñòü äåéñòâèé:1. fˆk1 k2 = (f, ek1 k2 )2.
v̂k1 k2 =fˆk1 k2λk1 k23. v(ih1 , jh2 ) =NP1 −1 NP2 −1k1 =1 k2 =1v̂k1 k2 ek1 k2 (ih1 , jh2 )Óòâåðæäåíèå : àðèôìåò. çàòðàòû O(N 4 ) - "â ëîá".Áîëåå õèòðî: O(N 3 )ÁÏÔ (áûñòðîå ïðåîáðàçîâàíèå Ôóðüå) â ñëó÷àå N = 2m → O(N 2 log2 N ).Èòåðàöèîííûé ìåòîä ðåøåíèÿ (∗∗) èç ïðîøë. ëåêöèèh2 + h22(Λ1 + Λ2 − 1Λ1 Λ2 )v = f +|{z12} |Aµ¶h21h22Λ1 + Λ21212{z}bAv = bλmin (A)∼ O(N 2 )(N1 = N2 )λmax (A)Èòåðàöèîííûé ïðîöåññ:v n+1 − v n+ Av n = bBαÑõîäèìîñòü:Îïðåäåëåíèå: A, B - ñïåêòðàëüíî ýêâèâàëåíòíû, åñëè ∃ m, M > 0 : mB ≤ A ≤ M B(õîòèì m è M ⊥⊥ N ) ⊥⊥ íåèçâåñòíûé çíà÷îê99B4kk πhisin2, i = 1, 22hi2li(i)Λi = ΛTi > 0 , ò.ê.
λk > 0(i)Λi − ñ.ç. : λk =∩p! Λ1 Λ2 = Λ2 Λ1R⇒ Λ1 Λ2 = (Λ1 Λ2 )T > 0(k.k = λmax (.))Λ1 ≤ kΛ1 kE, Λ2 ≤ kΛ2 kE44h2k1kΛ1 k < 2 , kΛ2 k < 2 ⇒kΛk k <h1h2123Λ1 Λ2 ≤ kΛ1 kΛ2Λµ1 Λ22 = Λ22¶Λ1 ≤ kΛ2 kΛ1 ⇒1h1 h2+Λ1 Λ2 < (Λ1 + Λ2 )12 123h21 + h222Λ = Λ1 + Λ2 −Λ1 Λ2 > (Λ1 + Λ2 )1232⇒ B ≤A≤1·B32m = , M = 1 ⇒ ñïåêòð. ýêâèâ. äîêàçàíà3BCv n+1 − v n2+ Av n = b, α :=αM +m⇒ èòåðàö. ì-ä ñõ-ñÿ êàê ãåîì.
ïðîãðåññèÿ ñî çíàìåíàòåëåìq=M −m1=M +m5⊥⊥N1 = N2 = N = 2p ⇒ íà êàæä. øàãå íàäî îáðàòèòü îïåð. B ∼ O(N 2 log2 N ), íî ÷èñëîøàãîâ ⊥⊥ N.Âñ¼ !100.