Численные методы. Ионкин (2009) (1160433), страница 12
Текст из файла (страница 12)
èìååì âòîðîé ïîðÿäîê ïîãðåøíîñòè.|zn | ≤ M1 τ,M1íå çàâèñèò îòτ,ïîëó÷àåì ïåðâûé ïîðÿäîêòî÷íîñòè.3Ìíîãîøàãîâûå ðàçíîñòíûå ìåòîäû(dudt= f (t, u(t)), t > 0u(0) = u0Ââåäåì ñåòêó ωτ = tn = nτ, τ > 0, n = 0, 1, . . . .Îáîçíà÷èì yk = y(tk ), fk = f (t, yk ).(1)Îïðåäåëåíèå. Ëèíåéíûì m-øàãîâûì ðàçíîñòíûì ìåòîäîì ðåøåíèÿ çàäà÷è () íàçûâàåòñÿìåòîä, çàïèñàííûé óðàâíåíèåì:mXakτk=0ãäåak , bkÅñëè- ÷èñëà,b0 = 0,τ > 0.Ïðè ýòîìyn−k =mXbk fn−k ,(2)k=0a0 6= 0, bm 6= 0, n = m, m + 1, . . .òî (2) - ÿâíûé ìåòîä.
Åñëèb0 6= 0,òî (2) - íåÿâíûé ìåòîä.Äëÿ íà÷àëà âû÷èñëåíèé ïî ôîðìóëå (2) íåîáõîäèìû çíà÷åíèÿ y0 , . . . , ym−1 - ò.í. ÐàçãîííûéPmýòàï. Òàê êàê ôîðìóëà (2) îäíîðîäíà ïî ak è bk , òî ïîëàãàþòk=0 = 1(óñëîâèå íîðìèðîâêè).Íåÿâíûé m-øàãîâûé ðàçíîñòíûé ìåòîä çàïèñûâàåòñÿ â âèäåa0yn − b0 f (tn , yk ) = F (yn−1 , yn−2 , . . .
, yn−m )τmmXXakF =bk fn−k −yn−kτk=1k=1Óðàâíåíèå (3) ðåøàåòñÿ ÷àùå âñåãî ìåòîäîì Íüþòîíà, ïðè÷åì â êà÷åñòâå ÿâíîì ðàçíîñòíîì ìåòîäå çíà÷åíèÿyn(3)(0)ynáåðåòñÿyn−1 .íàõîäÿòñÿ ïî ÿâíîé ôîðìóëåmmXτ Xakyn =bk fn−k −yn−ka0 k=1τk=1Îöåíèì ïîãðåøíîñòü àïïðîêñèìàöèè íà ðåøåíèèψn = −mXakk=0τun−k +mXk=0bk f (tn−k , un−k )(4)Ìíîãîøàãîâûå ðàçíîñòíûå ìåòîäû86un = u(tn − kτ ) =pX(−kτ )ll!l=0f (tn−k , un−k ) =u0n−k=u(l) (tn ) + O(τ p+1 )p−1X(−kτ )ll!l=0u(l+1) (tn ) + O(τ p )pp−1mmXXXak X (−kτ )l (l)ψn = −u (tn ) +bku(l+1) (tn ) = O(τ p ) =τl!k=0l=0k=0l=0=noñäâèã èíäåêñîâ=−pmXXak (−kτ )ll=0 k=0pmXXbkl=1 k=0−mXakk=0τun +pm hXXk=0l!u(l)n +(−kτ )l−1 (l)un + O(τ p ) =(l − 1)!(l)(−kτ )l−1 (ak k + lbk )l=1Óñëîâèå àïïðîêñèìàöèè:τmXun i+ O(τ p )l(l − 1)!ak = 0k=0Äëÿ äîñòèæåíèÿ àïïðîêñèìàöèè ïîðÿäêà p äîëæíî áûòü âûïîëíåíî ñîîòíîøåíèå:mXk l−1 (ak k + lbk ) = 0,l = 1, 2, .
. . , pk=0a0 , a1 , . . . , am , b0 , . . . , bm , è p+2 óðàâíåíèé. ×òîäîëæíî âûïîëíÿòüñÿ p ≤ 2m ⇒ íàèâûñøèé ïîðÿäîê ìíîãîøàãîâîì ìåòîäå 2m+2 íåèçâåñòíûõ áû ñèñòåìà íå áûëà ïåðåîïðåäåëåííîé,àïïðîêñèìàöèè ðàâåí 2m.Òàêèì îáðàçîì, äëÿ äîñòèæåíèÿ ïîðÿäêà ïîãðåøíîñòè àïïðîêñèìàöèèñÿ ñëåäóþùèå ñîîòíîøåíèÿ:a0 = −mXakk=1b0 = 1 −mXbkk=1mXk=0k l−1 (ak k + lbk ) = 0,l = 1, 2, . . . , pp äîëæíû âûïîëíÿòü-Ïîíÿòèå óñòîé÷èâîñòè ðàçíîñòíûõ ìåòîäîâ487Ïîíÿòèå óñòîé÷èâîñòè ðàçíîñòíûõ ìåòîäîâÐàññìîòðèì çàäà÷ó Êîøè:(dudt= f (t, u(t)),u(0) = u0 .t > 0,(1)Ðàññìîòðèì äëÿ ïðèìåðà òàêóþ ñõåìó:yn = qyn−1 ,q ∈ C,n = 0, 1, .
. . ;Ïðèäàäèìynâîçìóùåíèåy0q = const,çàäàí.δn :ỹn = yn + δn .ỹn+1 = q ỹn = qyn + qδn = yn+1 + δn+1 , ãäå δn+1 = qδn .|q| > 1, òî δn íàðàñòàåò, ñëåäîâàòåëüíî, îá óñòîé÷èâîñòèÒîãäàÅñëèãîâîðèòü íåëüçÿ.Ðàññìîòðèì ìîäåëüíóþ çàäà÷ó:(dudt+ λu(t) = 0,u(0) = u0 .Åå ðåøåíèå èìååò âèät > 0,(2)u(t) = u0 e−λt .
Åñëè λ > 0, òî |u(t)| ≤ |u0 |, ò.å. èìååò ìåñòî óñòîé÷èâîñòüïî íà÷àëüíîìó óñëîâèþ.Óñòîé÷èâîñòü âíóòðåííåå ñâîéñòâî ðàçíîñòíîé ñõåìû. Ðàçíîñòíàÿ ñõåìà íå îáÿçàòåëüíîñîõðàíÿåò óñòîé÷èâîñòü èñõîäíîé çàäà÷è.Ðàññìîòðèì ÿâíóþ ñõåìó Ýéëåðà:(yn+1 −ynτ= f (tn , yn ),y0 = u0 .(3)Çàïèøåì åå äëÿ ìîäåëüíîé çàäà÷è:yn+1 − yn+ λyn = 0.τÂûðàçèìyn+1 :yn+1 = yn − τ λyn = (1 − τ λ)yn .q = 1 − τ λ. Òîãäà yn+1 = qyn .âûïîëíÿëîñü |q| ≤ 1, ò.å.Îáîçíà÷èìÒàêèì îáðàçîì, äëÿ óñòîé÷èâîñòü íåîáõîäèìî, ÷òîáû1 − τ λ ≥ −1,0 < τ λ ≤ 2.Òàêèì îáðàçîì, äëÿ òîãî, ÷òîáû ÿâíàÿ ñõåìà Ýéëåðà áûëà óñòîé÷èâîé (äëÿ ìîäåëüíîé çàäà÷è),íåîáõîäèìî âûïîëíåíèå óñëîâèÿ0<τ ≤2.λ(4)Ýòî îçíà÷àåò, ÷òî ÿâíàÿ ñõåìà Ýéëåðà ÿâëÿåòñÿ óñëîâíî óñòîé÷èâîé (äëÿ ìîäåëüíîé çàäà÷è).Ïîíÿòèå óñòîé÷èâîñòè ðàçíîñòíûõ ìåòîäîâ88Ðàññìîòðèì íåÿâíóþ ñõåìó Ýéëåðà:yn+1 − yn= f (tn+1 , yn+1 ).τÏåðåïèøåì åå:yn+1 + τ f (tn+1 , yn+1 ) = yn .(5)Äëÿ ðåøåíèÿ íåëèíåéíîãî óðàâíåíèÿ (5) îáû÷íî ïðèìåíÿåòñÿ ìåòîä Íüþòîíà, â êà÷åñòâåíà÷àëüíîãî ïðèáëèæåíèÿ äëÿ íàõîæäåíèÿyn+1èñïîëüçóþòyn .Ïåðåïèøåì (5) äëÿ ìîäåëüíîé çàäà÷è:yn+1 + τ λyn+1 = yn ,(1 + τ λ)yn = tn+1 ,1.yn+1 = qyn , q =1 + τλÇàìåòèì, ÷òî |q| < 1 ïðè τ > 0, λ > 0.
Ýòî çíà÷èò, ÷òî íåÿâíàÿ ñõåìà Ýéëåðà ÿâëÿåòñÿ àáñîëþòíîóñòîé÷èâîé (äëÿ ìîäåëüíîé çàäà÷è).Òàêèì îáðàçîì, äëÿ óñòîé÷èâîé äèôôåðåíöèàëüíîé çàäà÷è ñóùåñòâóþò êàê óñòîé÷èâûå, òàêè íåóñòîé÷èâûå ñõåìû.Ðàññìîòðèì ïðîèçâîëüíûémXakk=0τm-øàãîâûéyn−k =mXðàçíîñòíûé ìåòîä:bk fn−k ,y0 , . . . , ym−1çàäàíû.(6)k=0Çàïèøåì åãî äëÿ ìîäåëüíîé çàäà÷è:mXakk=0τyn−k + λmXbk yn−k = 0,(7)k=0mX(ak + τ λbk )yn−k = 0.k=0Áóäåì èñêàòü ðåøåíèå ýòîãî óðàâíåíèÿ â âèäåyj = q j .Ïîäñòàâèì ýòî (7):mX(ak + τ λbk )q n−k = 0.k=0Ðàçäåëèì îáå ÷àñòè ýòîãî óðàâíåíèÿ íàq m−n ,ïîëó÷èìmXFm (τ, q) =(ak + τ λbk )q m−k = 0.(8)k=0Óðàâíåíèå (8) íàçûâàåòñÿ õàðàêòåðèñòè÷åñêèì óðàâíåíèåì.
Äëÿ óñòîé÷èâîñòè íåîáõîäèìî,÷òîáû åãî êîðíè ïî ìîäóëþ íå ïðåâîñõîäèëè 1 (èíà÷å ðåøåíèå áóäåò íåîãðàíè÷åííî íàðàñòàòü).Îäíàêî, íàõîæäåíèå êîðíåé óðàâíåíèÿ (8) òðóäíàÿ çàäà÷à, è îáû÷íî ðàññìàòðèâàþò áîëååïðîñòîå óðàâíåíèå:Fm (0, q) =mXak q m−k = 0.k=0Óðàâíåíèå (9), òàêæå êàê è óðàâíåíèå (8), íàçûâàþò õàðàêòåðèñòè÷åñêèì óðàâíåíèåì.(9)Ïîíÿòèå óñòîé÷èâîñòè ðàçíîñòíûõ ìåòîäîâ89Îïðåäåëåíèå.
Ãîâîðÿò, ÷òî ðàçíîñòíàÿ ñõåìà(6) óäîâëåòâîðÿåò óñëîâèþ(α),åñëè âñå êîð-íè õàðàêòåðèñòè÷åñêîãî óðàâíåíèÿ (9) ëåæàò âíóòðè èëè íà ãðàíèöå åäèíè÷íîãî êðóãà êîìïëåêñíîé ïëîñêîñòè, ïðè÷åì íà ãðàíèöå íåò êðàòíûõ êîðíåé.Òåîðåìà. Ïóñòü ðàçíîñòíàÿ ñõåìàτn ≤ T.(6) óäîâëåòâîðÿåò óñëîâèþÒîãäà äëÿ ëþáîãî äîñòàòî÷íî ìàëîãî|yn − un | ≤ MnXτMíå çàâèñèò îòτ, ψjè|fn0 | ≤ Lïðè0 ≤ tn =ñïðàâåäëèâî!τ |ψj | + max |yi − u(ti )| ,0≤i≤m−1j=mãäå(α)(10) ïîãðåøíîñòü àïïðîêñèìàöèè ðàçíîñòíîãî ìåòîäà (6) íà ðåøåíèåçàäà÷è (1).Çàìå÷àíèå. Ìåòîä Àäàìñà óäîâëåòâîðÿåò óñëîâèþ (α):a0 = −a1 = 1,myn − yn−1 Xbk fn−k .=τk−0Õàðàêòåðèñòè÷åñêîå óðàâíåíèå èìååò âèä:q n − q n−1 = 0,îíî èìååò êîðíèq=0èq = 1,ïðè÷åìq=1 íåêðàòíûé êîðåíü.Çàìå÷àíèå.
Äëÿ íåÿâíûõ ñõåì íàèâûñøèé ïîðÿäîê ïîãðåøíîñòè àïïðîêñèìàöèè p ≤ 2m. Äëÿÿâíûõ ñõåìp ≤ 2m − 1.Îäíàêî, ñõåìû âûñîêîãî ïîðÿäêà íå óäîâëåòâîðÿþò óñëîâèþ(α),ò.å. íå ÿâëÿþòñÿ óñòîé-÷èâûìè. Íàèâûñøèé ïîðÿäîê ïîãðåøíîñòè àïïðîêñèìàöèè äëÿ ñõåì, óäîâëåòâîðÿþùèõ óñëîâèþ(α),ñëåäóþùèé:1. Äëÿ íåÿâíûõ ñõåì:(a) Åñëè m ÷åòíî, òîp ≤ m + 2.(b) Åñëè m íå÷åòíî, òî2. Äëÿ ÿâíûõ ñõåìp ≤ m + 1.p ≤ m.Çàìå÷àíèå.
Ãîâîðèòü îá óñëîâíîé èëè áåçóñëîâíîé óñòîé÷èâîñòè íå èìååò ñìûñëà. Îíà âñåãäà óñëîâíàÿ, ò.ê. ðàññìàòðèâàþòñÿ ìàëûåτ.Çàäà÷à. Äîêàçàòü, ÷òî äëÿ ñõåìû2fn−1 + fn−2yn + 4yn−1 − 5yn−2=6τ3èìååò ìåñòîψn = O(τ 3 ).Æåñòêèå ñèñòåìû ÎÄÓ90Ðåøåíèå.ψn = −un + 4un−1 − 5un−2 2fn−1 + fn−2+.6τ3Çàïèøåì óñëîâèÿ, íàëàãàåìûå íà ìíîãîøàãîâûé ðàçíîñòíûé ìåòîä äëÿ òîãî, ÷òîáû ïîãðåøíîñòü àïïðîêñèìàöèè èìåëà ïîðÿäîê 3:mPb=1−bk ,0k=1mPak ,a0 = −mk=1Pak k = −1,k=1mP k l−1 (ak k + bk ) = 0, l = 2, 3.k=0m = 2, a0 = 61 , a1 = 23 , a2 = − 56 , b0 = 0, b1 = 23 , b2 = 13 . Âûïèñàííûå óñëîâèÿ,3ïðîâåðèòü, âûïîëíÿþòñÿ. Òàêèì îáðàçîì, ψn = O(τ ). íàøåì ñëó÷àå,êàê ëåãêîÐàññìîòðåííàÿ â ïðåäûäóùåé çàäà÷å ñõåìà íåóñòîé÷èâà.
Äåéñòâèòåëüíî, äëÿ íåå õàðàêòåðèñòè÷åñêîå óðàâíåíèå èìååò âèä:q 2 + 4q − 5 = 0.Ýòî óðàâíåíèå èìååò êîðíèóäîâëåòâîðÿåò óñëîâèþ5q1 = 1, q2 = −5.Ò.ê.|q2 | > 1,òî äàííûé ðàçíîñòíûé ìåòîä íå(α).Æåñòêèå ñèñòåìû ÎÄÓÐàññìîòðèì ñèñòåìó ÎÄÓdu1 dt + a1 u1 (t) = 0, t > 0,du2+ a2 u2 (t) = 0, t > 0,dtu1 (0) = u10 , u2 (0) = u20 , a1 > 0, a2 > 0.(1)Ðåøåíèå èìååò âèä:u1 (t) = u10 e−a1 t ,u2 (t) = u20 e−a2 t .a1 >> a2 . Òîãäà òàêàÿ ñèñòåìà ÎÄÓ íàçûâàåòñÿ æåñòêîé.
Ñ íåêîòîðîãî ìîìåíòà t∗ðåøåíèå u2 (t) ìàëî îòëè÷àåòñÿ îò 0. Îäíàêî, åñëè ìû ðåøàåì ýòó ñèñòåìó ïðè ïîìîùè ÿâíîé22ñõåìû Ýéëåðà, òî íàì íóæíî èñïîëüçîâàòü øàã τ ≤ min{ ,} = a22 . Ýòî áóäåò âåñüìà ìàëåíüa1 a2∗êèé øàã, èáî a1 >> a2 . Íî ñ íåêîòîðîãî ìîìåíòà t u2 ìîæíî íå ñ÷èòàòü, ò.å. èñïîëüçîâàíèåÏóñòüìàëåíüêîãî øàãà èçëèøíå. Òàêèì îáðàçîì, ÿâíûå ñõåìû äëÿ æåñòêèõ ñèñòåì ÎÄÓ íå ãîäÿòñÿ.Åñëè èñïîëüçîâàòü íåÿâíóþ ñõåìó, òî ìîæíî âçÿòü áîëåå êðóïíûé øàã.A(m · m)ñ ïîñòîÿííûìè ÷èñëàìè,du+ Au(t) = 0, t > 0dtu(t) = (u1 (t), u2 (t), . .
. , um (t))T .Îïðåäåëåíèå. Ñèñòåìà ëèíåéíûõ óðàâíåíèé íàçûâàåòñÿ æåñòêîé, åñëè:(2)Äàëüíåéøåå îïðåäåëåíèå óñòîé÷èâîñòè è ïðèìåðû ðàçíîñòíûõ ñõåì. Èíòåãðèðîâàíèåæåñòêèõ ñõåì ÄÓ1.ReλAk > 02.s=91(óñòîé÷èâîñòü ïî Ëÿïóíîâó),max1≤k≤m |ReλAk|min1≤k≤m |ReλAk|>> 1(s ÷èñëî æåñòêîñòè).Ââåäåì ïîíÿòèå æåñòêîñòè äëÿ íåëèíåéíîé ñèñòåìû:du= f (t, u(t)), t > 0u(0) = u0dtÏóñòüv(t)(3) íåêîòîðîå ðåøåíèå çàäà÷è (3), òîãäà ðàññìîòðèì â îêðåñòíîñòè äàííîãî ðåøåíèÿðàçíîñòü:z(t) = u(t) − v(t)dzk= fk (t, v(t) + z(t)) − fk (t, v(t)), k = 1, mdtÐàçëîæèì fk (t, v(t) + z(t)) â îêðåñòíîñòè òî÷êè (t, v(t)), óäåðæèâàÿ òîëüêî ïåðâóþ ïðîèçâîäíóþ:fk (t, v(t) + z(t)) = fk (t, v(t)) +Îáîçíà÷èì∂fk∂fk(t, v(t))z1 (t) + . . .(t, v(t))zm (t) + o(|z|)∂u1∂um∂z= J(t, v(t))z∂t(4)Ïî îïðåäåëåíèþ,J(t, v(t))z = (∂fi (t, v(t)))ij , i, j = 1, n.∂ujÒåïåðü ââåäåì ÷èñëî æåñòêîñòè s êàê îòíîøåíèå:Îïðåäåëåíèå.