Главная » Просмотр файлов » Лекции В.А. Захарова

Лекции В.А. Захарова (1157993), страница 19

Файл №1157993 Лекции В.А. Захарова (Лекции В.А. Захарова) 19 страницаЛекции В.А. Захарова (1157993) страница 192019-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 19)

. . , CmD 0 = A00 ← A01 , A02 , . . . , A0n ;θ = НОУ(Ci , A00 )КОММЕНТАРИИ.Вычисляем Наиболее Общий Унификатор.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯОпределение (SLD-резолюции)G = ? C1 , . . . , Ci , . . . , CmD 0 = A00 ← A01 , A02 , . . . , A0n ;θ = НОУ(Ci , A00 )?G 0 = ? (C1 , . . . , Ci−1 , A01 , A02 , . . . , A0n , Ci+1 , .

. . , Cm )θКОММЕНТАРИИ.Строим SLD-резольвентуSLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯОпределение (SLD-резолюции)G = ¬C1 ∨ · · · ∨ ¬Ci ∨ · · · ∨ ¬CmD 0 = A00 ∨ ¬A01 ∨ ¬A02 ∨ · · · ∨ A0n ;θ = НОУ(Ci , A00 )?G 0 = (¬C1 ∨· · · ∨¬Ci−1 ∨¬A01 ∨¬A02 ∨ · · · ∨¬A0n ∨¬Ci+1 ∨ · · · ∨¬Cm )θКОММЕНТАРИИ.Действительно, это резольвента двух дизъюнктовSLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 1.G = ? P(X ), R(X , f (Y )), R(Y , c)КОММЕНТАРИИ.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 1.G = ? P(X ), R(X , f (Y )), R(Y , c)КОММЕНТАРИИ.Выделяем подцель в запросе.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 1.G = ? P(X ), R(X , f (Y )), R(Y , c)D = R(Y , X ) ← P(X ), R(c, Y );КОММЕНТАРИИ.Выбираем программное утверждение.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 1.G = ? P(X ), R(X , f (Y )), R(Y , c)D 0 = R(Y1 , X1 ) ← P(X1 ), R(c, Y1 );КОММЕНТАРИИ.Переименовываем переменные в выбранном утверждении,так чтобы VarD 0 ∩ VarG = ∅.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 1.G = ? P(X ), R(X , f (Y )), R(Y , c)D 0 = R(Y1 , X1 ) ← P(X1 ), R(c, Y1 );θ = НОУ(R(X , f (Y )), R(Y1 , X1 )) = {Y1 /X , X1 /f (Y )}КОММЕНТАРИИ.Вычисляем Наиболее Общий Унификатор.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 1.G = ? P(X ), R(X , f (Y )), R(Y , c)D 0 = R(Y1 , X1 ) ← P(X1 ), R(c, Y1 );θ = НОУ(R(X , f (Y )), R(Y1 , X1 )) = {Y1 /X , X1 /f (Y )}?G 0 = ? (P(X ), P(X1 ), R(c, Y1 ), R(Y , c))θКОММЕНТАРИИ.Строим SLD-резольвентуSLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 1.G = ? P(X ), R(X , f (Y )), R(Y , c)D 0 = R(Y1 , X1 ) ← P(X1 ), R(c, Y1 );θ = НОУ(R(X , f (Y )), R(Y1 , X1 )) = {Y1 /X , X1 /f (Y )}?G 0 = ? P(X ), P(f (Y )), R(c, X ), R(Y , c)КОММЕНТАРИИ.Вот она.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 2..G = ? R(X , X nil)КОММЕНТАРИИ.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 2..G = ? R(X , X nil)КОММЕНТАРИИ.Выделяем подцель в запросе.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 2..G = ? R(X , X nil).D = R(X nil, Y ) ←;КОММЕНТАРИИ.Выбираем программное утверждение.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 2..G = ? R(X , X nil).D 0 = R(X1 nil, Y1 ) ←;КОММЕНТАРИИ.Переименовываем переменные в выбранном утверждении,так чтобы VarD 0 ∩ VarG = ∅.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 2..G = ? R(X , X nil).D 0 = R(X1 nil, Y1 ) ←;...

.θ = НОУ(R(X , X nil), R(X1 nil, Y1 )) ={X /X1 nil, Y1 /(X1 nil) nil}.КОММЕНТАРИИ.Вычисляем Наиболее Общий Унификатор.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 2..G = ? R(X , X nil).D 0 = R(X1 nil, Y1 ) ←;... .θ = НОУ(R(X , X nil), R(X1 nil, Y1 )) ={X /X1 nil, Y1 /(X1 nil) nil}0G = ()θ?.КОММЕНТАРИИ.Строим SLD-резольвентуSLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 2..G = ? R(X , X nil).D 0 = R(X1 nil, Y1 ) ←;... .θ = НОУ(R(X , X nil), R(X1 nil, Y1 )) ={X /X1 nil, Y1 /(X1 nil) nil}.?G0 = КОММЕНТАРИИ.Вот она.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 3..G = ? R(X , X nil), P(c, Y )КОММЕНТАРИИ.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 3..G = ? R(X , X nil), P(c, Y )КОММЕНТАРИИ.Выделяем подцель в запросе.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 3..G = ? R(X , X nil), P(c, Y ).D = R(X nil, X ) ←;КОММЕНТАРИИ.Выбираем программное утверждение.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 3..G = ? R(X , X nil), P(c, Y ).D 0 = R(X1 nil, X1 ) ←;КОММЕНТАРИИ.Переименовываем переменные в выбранном утверждении,SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 3..G = ? R(X , X nil), P(c, Y ).D 0 = R(X1 nil, X1 ) ←;..НОУ(R(X , X nil), R(X1 nil, X1 )) = ∅КОММЕНТАРИИ.Атомы неунифицируемы!SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 3..G = ? R(X , X nil), P(c, Y ).D 0 = R(X1 nil, X1 ) ←;..НОУ(R(X , X nil), R(X1 nil, X1 )) = ∅КОММЕНТАРИИ.Значит, SLD-резольвенту нельзя построить.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 3..G = ? R(X , X nil), P(c, Y ).D 0 = R(X1 nil, X1 ) ←;..НОУ(R(X , X nil), R(X1 nil, X1 )) = ∅КОММЕНТАРИИ.Нужно выделить другую подцель иливыбрать другое программное утверждение.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯОпределение (SLD-резолютивного вычисления)ПустьIG0 = ? C1 , C2 , .

. . , Cm — целевое утверждение,IP = {D1 , D2 , . . . , DN } — хорновская логическая программа.Тогда (частичным) SLD-резолютивным вычислением ,порожденным запросом G0 к логической программе Pназывается последовательность троек (конечная илибесконечная)(Dj1 , θ1 , G1 ), (Dj2 , θ2 , G2 ), .

. . , (Djn , θn , Gn ), . . . ,в которой для любого i, i ≥ 1,IDji ∈ P, θi ∈ Subst, Gi — целевое утверждение (запрос);Iзапрос Gi является SLD-резольвентой программногоутверждения Dji и запроса Gi−1 с унификатором θi .SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯОпределение (SLD-резолютивного вычисления)Частичное SLD-резолютивное вычислениеcomp = (Dj1 , θ1 , G1 ), (Dj2 , θ2 , G2 ), .

. . , (Djk , θn , Gn )называетсяIуспешным вычислением (SLD-резолютивнымопровержением), если Gn = ;Iбесконечным вычислением , если comp — это бесконечнаяпоследовательность;Iтупиковым вычислением , если comp — это конечнаяпоследовательность, и при этом для выделенной подцелизапроса Gn невозможно построить ни однойSLD-резольвенты.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯОпределение (SLD-резолютивного вычисления)ПустьIG0 = ? C1 , C2 , . . . , Cm — целевое утверждение с целевымипеременными Y1 , Y2 , .

. . , Yk ,IP = {D1 , D2 , . . . , DN } — хорновская логическая программа,Icomp = (Dj1 , θ1 , G1 ), (Dj2 , θ2 , G2 ), . . . , (Djn , θn , ) —успешное SLD-резолютивное вычисление, порожденноезапросом G к программе P.Тогда подстановкаθ = (θ1 θ2 . . . θn )|Y1 ,Y2 ,...,Yk ,представляющая собой композицию всех вычисленныхунификаторов θ1 , θ2 , . . . , θn , ограниченную целевымипеременными Y1 , Y2 , .

. . , Yk ,называется вычисленным ответом на запрос G0 к программе P.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 4.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :...? elem(X , a b c nil)SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 4.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :...? elem(X , a b c nil)...G0 =?elem(X , a b c nil)SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 4.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :...? elem(X , a b c nil)....G0 =?elem(X , a b c nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 4.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :....G0 =?elem(X , a b c nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );?..G1 =?elem(X1 , b c nil)...? elem(X , a b c nil)..

θ1 = {X /X1 , Y1 /a, L1 /b c nil}SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 4.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :...? elem(X , a b c nil)....G0 =?elem(X , a b c nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );.. θ1 = {X /X1 , Y1 /a, L1 /b c nil}?...G1 =?elem(X1 , b c nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 4.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :...? elem(X , a b c nil)....G0 =?elem(X , a b c nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );.. θ1 = {X /X1 , Y1 /a, L1 /b c nil}?...G1 =?elem(X1 , b c nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );?.θ2 = {X1 /X2 , Y2 /b, L2 /c nil}.G2 =?elem(X2 , c nil)SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 4.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :...? elem(X , a b c nil)....G0 =?elem(X , a b c nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );..

θ1 = {X /X1 , Y1 /a, L1 /b c nil}?...G1 =?elem(X1 , b c nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );?.θ2 = {X1 /X2 , Y2 /b, L2 /c nil}.G2 =?elem(X2 , c nil)elem(X3 ,X3 nil);.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 4.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :...? elem(X , a b c nil)....G0 =?elem(X , a b c nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );.. θ1 = {X /X1 , Y1 /a, L1 /b c nil}?...G1 =?elem(X1 , b c nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );?.G2 =?elem(X2 , c nil)elem(X3 ,X3 nil);. θ3 = {X2 /c, X3 /c}?G3 = УСПЕХ!.θ2 = {X1 /X2 , Y2 /b, L2 /c nil}SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 4.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :...? elem(X , a b c nil)....G0 =?elem(X , a b c nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );..

θ1 = {X /X1 , Y1 /a, L1 /b c nil}?...G1 =?elem(X1 , b c nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );?.θ2 = {X1 /X2 , Y2 /b, L2 /c nil}.G2 =?elem(X2 , c nil)elem(X3 ,X3 nil);. θ3 = {X2 /c, X3 /c}?G3 = УСПЕХ!Вычисленный ответ: θ = (θ1 θ2 θ3 )|X = {X /c}SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 5.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :..? elem(c, a b nil)SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 5.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :..? elem(c, a b nil)..G0 =?elem(c, a b nil)SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 5.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :..? elem(c, a b nil)..G0 =?elem(c, a b nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 5.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :..? elem(c, a b nil)..G0 =?elem(c, a b nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );..

θ1 = {X1 /c, Y1 /a, L1 /b nil}?.G1 =?elem(c, b nil)SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 5.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :..? elem(c, a b nil)..G0 =?elem(c, a b nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );.. θ1 = {X1 /c, Y1 /a, L1 /b nil}?.G1 =?elem(c, b nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 5.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :..? elem(c, a b nil)..G0 =?elem(c, a b nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );.. θ1 = {X1 /c, Y1 /a, L1 /b nil}?.G1 =?elem(c, b nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );.θ2 = {X1 /X2 , Y2 /b, L2 /nil}?G2 =?elem(c, nil)SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 5.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :..? elem(c, a b nil)..G0 =?elem(c, a b nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );.. θ1 = {X1 /c, Y1 /a, L1 /b nil}?.G1 =?elem(c, b nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );.θ2 = {X1 /X2 , Y2 /b, L2 /nil}?G2 =?elem(c, nil)elem(X3 ,X3 L3 );Нет унификатора.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 5.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :..? elem(c, a b nil)..G0 =?elem(c, a b nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );..

θ1 = {X1 /c, Y1 /a, L1 /b nil}?.G1 =?elem(c, b nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );.θ2 = {X1 /X2 , Y2 /b, L2 /nil}?G2 =?elem(c, nil)elem(X3 ,Y3 L3 ) ← elem(X3 ,L3 );Нет унификатора.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 5.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :..? elem(c, a b nil)..G0 =?elem(c, a b nil)elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );.. θ1 = {X1 /c, Y1 /a, L1 /b nil}?.G1 =?elem(c, b nil)elem(X2 ,Y2 L2 ) ← elem(X2 ,L2 );.θ2 = {X1 /X2 , Y2 /b, L2 /nil}?G2 =?elem(c, nil)failureНет SLD-резольвентыТУПИК!SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 6.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :? elem(a, X )SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 6.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :? elem(a, X )G0 =?elem(a, X )SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 6.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :? elem(a, X )G0 =?elem(a, X )elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );.SLD-РЕЗОЛЮТИВНЫЕ ВЫЧИСЛЕНИЯПример 6.Логическая программа P:.elem(X , Y .L) ← elem(X , L);elem(X , X L);Запрос G0 :? elem(a, X )G0 =?elem(a, X )elem(X1 ,Y1 L1 ) ← elem(X1 ,L1 );..

Характеристики

Тип файла
PDF-файл
Размер
14,68 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее