оки4 (1155747), страница 5
Текст из файла (страница 5)
Пусть Σx1 , . . . , xn , эквивалентные КС Σ0 и Σ00 соответственно. Изb0 ⇒ Σb 00 , и поэтому, в силу лемопределений следует, что Σ(n)t2мы 4.1, существует ЭП видаb0 ⇒ Σb 00 ⇒ Σ00 .Σ0 ⇒ Στn(n)t2τn§4. Отсутствие КПСТ в классе КСIi1C1.. .CqvCa2 −1CapCa2v1⇒Ii1vIipvp⇒(n)(n)t11t9Ii2v2b)vp+1C2n(n)t9.. Iip. Ca3 −1v2nv1...| {z }Ii2a)Σ1⇒35vp+1v2 nCp+1vIi1IipIi2vp000vp ⇒ Σ 1−−→ v1(n)(n)t3t1v2v2c)d)Рис. 4.2: к доказательству леммы 4.1Теорема доказана.Следствие 1. Система τn является КПСТ для ЭП КС изUK от БП x1 , .
. . , xn .Следствие 2. Система τ∞ является ПСТ для ЭП КС изUK .Докажем теперь отсутствие КПСТ в классе UK . Для КС Σот БП x1 , . . . , xn и набора α, α ∈ B n , определим величинуΘ (Σ, α) = |E (Σ|α )| − |V (Σ|α )| + |c (Σ|α )| ,которая (см. ??) задает цикломатическое число графа Σ|α .36Глава 4.
Эквивалентные преобразования управляющих системПоложим, далее,XΘ (Σ) =Θ (Σ, α) .α∈B nЛемма 4.2. Если Σ0 (x1 , . . . , xn )⇒Σ00 (x1 , . . . , xn ), то{t1 −t5 }Θ (Σ0 ) = Θ (Σ00 ), а если Σ0 ⇒ Σ00 , где k < n, то Θ (Σ0 )−Θ (Σ00 )τkделится на 2n−k .Доказательство. Докажем, что Θ(Σ0 )=Θ(Σ00 ), если Σ0 −→Σ00tiдля любого i из отрезка [1, 5]. Действительно, пусть КС Σ00b 0 , которая имеполучается из КС Σ0 заменой ее подсхемы Σiет вид левой части тождества ti , на соответствующую ейb 00 этого тождества.
Нетрудно проверить, чтоправую часть Σiдля любого i, i ∈ [1, 5], число линейно независимых циклов графов Σ|α0 и Σ|α00 одинаково при всех α, α ∈ B n , и,следовательно, Θ (Σ0 ) = Θ (Σ00 ).Пусть теперь Σ0 ⇒ Σ00 , причем k < n. Если КС Σ0 соτkдержит в качестве подсхемы цикл из k контактов с однимполюсом, то КС Σ00 содержит вместо него один лишь полюс. Рассмотрим цикломатическое число сети Σ0 |α для различных α, α ∈ B n . Если цикл указанного вида в КС Σ0содержит контакты, помеченные различными буквами одной и той же БП, то, очевидно, для любого α, α ∈ B n ,Θ (Σ0 )−Θ (Σ00 ) = 0. В противном случае, пусть xj1 , .
. . , xjm —все различные БП, встречающиеся среди пометок указанного цикла, причем m 6 k. Заметим, что если цикл проводитна наборе α, α ∈ B n , то он проводит и на всех 2n−m наборах, в которых значения переменных с индексами j1 , . . . , jmсовпадают со значениями соответствующих переменных набора α. Таким образом, разностьXΘ Σ0 − Θ Σ00 =Θ Σ0 |α − Θ Σ00 |αα=(α1 ,...,αn )§4. Отсутствие КПСТ в классе КС37делится на 2n−m и, следовательно, делится на 2n−kЛемма доказана.Теорема 4.2. В классе UK не существует конечной полнойсистемы тождеств.Доказательство.
Проведем доказательство от противного:пусть τ — КПСТ для ЭП КС UK , и пусть n — максимальное число БП, встречающихся в тождествах системыτ . Тогда τn ⇒ τ и τn — КПСТ для UK . Докажем, что(n+1)τn 6⇒ t6. Для этого рассмотрим КС Σ0 , состоящую изпростого цикла длины (n + 1), содержащего контакты с пометками xi , i ∈ [1, n + 1], и имеющую единственный полюс с пометкой 1, которая является левой частью тождества(n+1)t6. Очевидно, что ей эквивалентна КС Σ00 , содержащаяизолированный полюс 1, которая является правой частью(n+1)(n+1)тождества t6.
Если τn ⇒ t6, то Σ0 ⇒ Σ00 . Согласноτnданным выше определениям, Θ (Σ0 ) = 1, Θ (Σ00 ) = 0 и разность Θ (Σ0 ) − Θ (Σ00 ) = 1 не делится на 2, что противоречит(n+1)утверждению леммы 4.2. Таким образом, тождество t6не выводится из системы τn , а значит, и из системы τ . Отсюда следует, что τ не может являться КПСТ для ЭП КСиз класса UK .Теорема доказана.Литература[1] Алексеев В. Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел ф-та ВМиК МГУ, 2002.[2] Алексеев В. Б., Вороненко А. А., Ложкин С. А.,Романов Д. С., Сапоженко А.
А., Селезнева С. Н.Задачи по курсу «Основы кибернетики». Издательский отдел ф-та ВМиК МГУ, 2002.[3] Алексеев В. Б., Ложкин С. А. Элементы теории графов, схем и автоматов. М.: Издательский отдел ф-таВМиК МГУ, 2000.[4] Боровков А. А. Курс теории вероятностей. М.: Наука,1976.[5] Гаврилов Г. П., Сапоженко А.
А. Задачи и упражнения по дискретной математике. 3-е изд., перераб.М.: ФИЗМАТЛИТ, 2004.[6] Дискретная математика и математические вопросы кибернетики, под редакцией С. В. Яблонского иО. Б. Лупанова. Т. 1. М.: Наука, 1974.[7] Евдокимов А. А. О максимальной длине цепи в единичном n-мерном кубе // Матем. заметки. 1969.
6. №3.С. 309–319.[8] Емеличев В. А., Мельников О. И., Сарванов В. И.,Тышкевич Р. И. Лекции по теории графов. М.: Наука,1977.38Литература39[9] Журавлев Ю. И. Локальные алгоритмы вычисленияинформации // Кибернетика. №1. 1965. С. 12–19.[10] Журавлев Ю. И. Теоретико-множественные методы валгебре логики // Проблемы кибернетики. Вып. 8.М.: Физматгиз, 1962. С. 5-44.[11] Кузьмин В. А. Оценки сложности реализации функций алгебры логики простейшими видами бинарныхпрограмм // Сб. «Методы дискретного анализа втеории кодов и схем». Новосибирск, 1976. Вып. 29.С. 11–39[12] Ложкин С.
А. Оценки высокой степени точности длясложности управляющих систем из некоторых классов // Математические вопросы кибернетики. Вып. 6.М.: Наука, 1996. С. 189–214.[13] Ложкин С. А. Структурное моделирование и декомпозиция для некоторых классов схем. М.: Издательский отдел ф-та ВМиК МГУ, 2001.[14] Лупанов О. Б. Асимптотические оценки сложностиуправляющих систем. М.: Изд-во МГУ, 1984.[15] Лупанов О. Б. О сложности реализации функцийалгебры логики релейно-контактными схемами //Проблемы кибернетики.
Вып. 11. М.: Наука, 1964.С. 25–48.[16] Лупанов О. Б. О сложности реализации функций алгебры логики формулами // Проблемы кибернетики.Вып. 3. М.: Физматгиз, 1960. С. 61–80.[17] Лупанов О. Б. Об одном подходе к синтезу управляющих систем — принципе локального кодирования.40Литература// Проблемы кибернетики. Вып. 14. М.: Наука, 1965.С. 31–110.[18] Мурога С. Системы проектирования сверхбольшихинтегральных схем.
М.: Мир, 1985.[19] Нечипорук Э. И. О топологических принципах самокорректирования // Проблемы кибернетики. Вып. 21.М.: Наука, 1969. С. 5–102.[20] Нигматуллин Р. Г. Сложность булевых функций.М.: Наука, 1991.[21] Поваров Г. Н. Метод синтеза вычислительных и управляющих контактных схем // Автоматика и телемеханика. 1957.
Т. 18. №2. С. 145–162.[22] Сапоженко А. А. Дизъюнктивные нормальные формы. М.: Изд-во МГУ, 1975.[23] Сапоженко А. А. Некоторые вопросы сложности алгоритмов. Издательский отдел ф-та ВМиК МГУ, 2001.[24] Сапоженко А. А., Ложкин С. А. Методы логического проектирования и оценки сложности схем на дополняющих МОП-транзисторах // Микроэлектроника. 1983. Т. 12. №1. С. 42–47.[25] Фихтенгольц Г.
М. Основы математического анализа,том 1. М.: Наука, 1968.[26] Фихтенгольц Г. М. Основы математического анализа,том 2. М.: Наука, 1964.[27] Чегис И. А., Яблонский С. В. Логические способыконтроля работы электрических схем // Труды МИАН СССР. Т. 51. М.: Изд-во АН СССР, 1958. С. 270–360.Литература41[28] Яблонский С. В. Введение в дискретную математику.2-е изд., перераб.
и доп. М.: Наука, 1986.[29] Яблонский С. В. Надежность управляющих систем.М.: Изд-во МГУ, 1991.[30] Яблонский С. В. Некоторые вопросы надежности иконтроля управляющих систем // Математические вопросы кибернетики. Вып. 1. М.: Наука, 1988. С. 5–25.[31] Яблонский С. В. Элементы математической кибернетики. М.: Высшая школа, 2007.[32] Cardot C.
Quelques resultats sur l’application de l’algèbrede Boole à la synthèse des circuits a relais //Ann. Telecommunications. 1952. V.7. №2. P. 75–84.[33] Shannon C. E. The syntesis of two-terminal switchingcircuits // Bell Syst. Techn. J. 1949. V. 28. №1.P. 59–98 (Русский перевод: Шеннон К. Работы потеории информации и кибернетике. М.: ИЛ, 1963.С. 59–101).[34] Wegener I. Branching programs and binary decisiondiagrams. SIAM Publishers, 2000..