Диссертация (1151123), страница 19
Текст из файла (страница 19)
An ARIMA-InterventionAnalysis Model for the Financial Crisis in China‟s Manufacturing Industry.130International Journal of Engineering Business Management, Vol. 1, No. 1,pp. 15-18 COCOBOD NEWS, 200764.Collier B., Ani L.K., and Skees J.R., (2010). Loan Portfolio Performanceand El_iño, an Intervention Analysis.
Selected Paper prepared forpresentation at the Southern Agricultural Economics Association AnnualMeeting, Orlando, FL65.Enders W., Sandler T., and Cauley J., (1990). Assessing the impact ofterrorist-thwarting policies: An intervention time series approach. DefenseEconomics 2(1), 1–18.66.Cook, T.D., and D.T. Campbell (1979). Quasi-experiments: interrupted timeseries designs. In Cook, T.D., and D.T. Campbell (eds.) QuasiExperimentation: Design and Analysis Issues for Field Settings.
Chicago:Rand McNally.67.Corey M., Abbey M. Oracle Data Warehousing. — McGraw HillCompanies Inc., 1996.68.Edwards J.S. Expert Systems in Management and Administration — Arethey really different from Decision Support Systems? // European Journal ofOperational Research, 1992. — Vol. 61. — pp. 114—121.69.Enders, W. (1995). Applied Econometric Time Series. John Wiley & Sons,New York, NY.70.Ferrand Y., Kelton C.M., Guo J.J., Levy M.S., and Yu Y., (2011). Usingtime-series intervention analysis to understand U.S. Medicaid expenditureson antidepressant agents.
Res Social Adm Pharm.7(1):64-80.71.Fox R.T., (1996). “Using Intervention Analysis to Assess CatastrophicEvents on Business Environment.” International Advances in EconomicResearch 2: 341-349.72.Frish R. Editorial // Econometrica, Jan., 1933, Vol. 1, No. 1, pp. 1-473.Girard D.Z., (2000). Intervention times series analysis of pertussisvaccination in England and Wales.
Health Policy (2000) 54: 13-25.13174.Glass, G. V, Willson, V. L., & Gottman, J. M. (1975). Design and analysisof time-series experiments. Boulder, CO: Colorado Associated UniversityPress.75.Guzhva S.V., (2008). Applying intervention analysis to financialperformance data: The case of US airlines and September 11th. Journal ofEconomics and Finance, Volume 32, Number 3, 243-25976.Hamilton, J.D. (1994). Time Series Analysis.
Princeton University Press,Princeton, NJ.77.Harvey A.C., and Durbin J., (1986). „The effects of seat belts legislation onBritish road casualties: a case study in structural time series modelling‟,Journal of the Royal Statistical Society, Series A. vol. 149, pp. 187-227.78.Haykin S. Neural Networks. A comprehensive foundation // Prentice-Hall,Inc. Canada. – 1999 – С. 652.79.Ismail Z., Suhartono Y.A., and Efendi R., (2009). Intervention Model forAnalyzing the Impact of Terrorism to Tourism Industry. Journal ofMathematics and Statistics 5 (4): 322-329, ISSN: 1549-364480.Keum-Rok Y., (1998). Intervention Analysis of Electoral Tax Cycle: TheCase of Japan.81.Hyndman R., Khandkar Y.
Automatic Time Series Forecasting: The forecastPackage for R. // Journal of Statistical Software. – 2008 – С. 8-19.82.Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D. Forecasting withExponential Smoothing // Softcover - The State Space Approach. – 2008 –С. 36083.Jain A. K., Mao J., Mohiuddin K.M. Artificial Neural Networks: A Tutorial,Computer, Vol.29, No.3, March/1996, pp. 31-44.84.Ledolter J., and Chan K.S., (1996). Evaluating the impact of the 65mphmaximum speed limit on Iowa rural interstates. American Statistician, 50, 79– 8585.Little I.D.C.
Models and Managers: The Concept of a Decision Calculus //Management Science, 1970. — v.16. — N 8.13286.Lloyd T., Morrissey O., and Reed G., (1998), Estimating the impact of antidumping and anti-cartel actions using intervention analysis, EconomicJournal, vol.108, pp. 458-76.87.Makridakis S., Wheelwright S. C., and Hyndman R.
J., (1998). Forecasting:Methods and Applications, 3rd ed., Wiley.88.McDowall, D., R. McCleary, E.E. Meidinger, and R.A. Hay, Jr. (1980).Interrupted Time Series Analysis. Beverly Hills, CA: Sage Publications.89.Min C.H.J., (2008a). Intervention analysis of inbound tourism: A case studyof Taiwan, in Joseph S. Chen (ed.) 4 (Advances in Hospitality and Leisure,Volume 4), Emerald Group Publishing Limited, pp.53-7490.Min C.H.J., (2008b). "Forecasting Japanese tourism demand in Taiwanusing an intervention analysis", International Journal of Culture, Tourismand Hospitality Research, Vol.
2 Iss: 3, pp.197 – 21691.Min C.H.J., Hsien-Hung K., and Hsiang L.H., (2010). Interventionsaffecting air transport passenger demand in Taiwan. African Journal ofBusiness Management Vol. 4(10), pp. 2121-2131, ISSN: 1993-823392.Morales R. A., Cowen P., and Van P.P.N., (1988). The use of InterventionAnalysis in Disease Control and Eradication Program Evaluation:California‟s Brucellosis Eradication Campaign. Proceedings of the 5thInternational Symposium on Veterinary Epidemiology and Economics. ActaVeterinaria Scandinavia, Suppletum 84. www.sciquest.org.nz93.Muhammad H., Lee S., and Bahrom S., (2010). Multi Input InterventionModel for Evaluating the Impact of the Asian Crisis and Terrorist Attacks onTourist Arrivals. MATEMATIKA, Volume 26, Number 1, 83–10694.Narayan J., and Considine J., (1989).
Intervention analysis to assess theimpact of price changes on ridership in a transit system: a case study. Logist.Transport. Rev., 25(1): 53-62.95.Nelson. J. P. Consumer Bankruptcies and the Bankruptcy Reform Act: ATime-Series Intervention Analysis. // Journal of Financial Services ResearchVolume 17, Number 2. – 2000.
– C. 181-20013396.Power D. J. «What is a DSS?» // The On-Line Executive Journal for DataIntensive Decision Support, 1997.97.Power D. J. Web-based and model-driven decision support systems:concepts and issues. Americas Conference on Information Systems, LongBeach, California, 2000.98.PowerD.J.ABriefHistoryofDecisionSupportSystems.DSSResources.COM, World Wide Web, version 2.8, May 31, 2003.99.Remenyi N., Anderson D.M., and Murray L.W., (2010).
Using time-seriesintervention analysis to model cow heart rate affected by programmed audioand environmental/physiological cues. In: Applied Statistics in AgricultureConference Proceedings, pp.107–136, Kansas State University Publishers,Manhattan Kansas.100. Robert A.Yaffee., and McGee M., (2000). Introduction to Time SeriesAnalysis and Forecasting with Applications of SAS and SPSS. AcademicPress Inc., San Dieg.101. Rock-Antoine M., and Hannarong S., (2002). Who is benefiting the mostfrom nafta? An Intervention time series analysis.
Journal of economicdevelopment 69 volume 27, number 2102. Sathianandan T.V., Somy K., Mini K. G., and Joji T.V., (2006). Impact ofintroduction of crafts with outboard engines on marine fish production inKerala and Karnataka – a study through Intervention analysis. Indian Journalof Fisheries, 53 (3): pp. 271-282103. Shittu O.I., (2009). Modeling Exchange Rate in Nigeria in the Presence ofFinancial and Political Instability: An Intervention Analysis Approach.Middle Eastern Finance and Economics, ISSN: 1450 – 2889, Issue 5.104. Smith K., Gupta N.D.
Neural networks in business: techniques andapplications. Hershey, USA: Idea Group Publishing, 2002. 271 p.105. Stanley M.H., (1984). Effects of Spring Breakup on Microscale AirTemperatures in the Mackenzie River Delta. Arctic, Vol. 37, No. 3, pp.
263269134106. Turban, E. Decision support and expert systems: management supportsystems. -Englewood Cliffs, N.J.: Prentice Hall, 1995. — 887 p.107. Venugopal, V. and Baets, W. (1994). Neural networks and their applicationsin marketing management. Journal of Systems Management, September, 1621.108. Welsh D., and Stewart D.B., (1999). Applications of intervention analysis tomodel the impact of drought and bushfires of Water Quality. AustralianJournal of Marine and Freshwater Research 40 (3) 241 – 257109.
Yaacob W.F., Husin W.Z., Abd.Aziz N., and Nordin N. I., (2011). AnIntervention Model of Road Accidents: The Case of OPS Sikap Intervention.Journal of Applied Sciences, 11: 1105-1112.110. Yu Hen Hu, Jenq-Neng Hwang. Handbook of neural network signalprocessing. Danvers, USA: CRC Press, 2002. 384p.111. Zambon F., Fedeli U., Cristiana V., Marchesan M., Avossa F., Brocco S.,and Spolaore P., (2007). Evidence-based policy on road safety: the effect ofthe demerit points system on seat belt use and health outcomes. Journal ofEpidemiology and Community Health, 61:877-881.112. Zhang G.
P. Neural Networks in Business Forecasting. Georgia, USA: IdeaGroup Publishing, 2004. 350 p.135Приложение 1. Реализация алгоритма оцениванияхарактера одного внешнего события с использованиемпроцедуры auto-arima в пакете Rrm(list=ls(all=TRUE))data <- read.table("cars.csv", header=T, sep=";", dec=",")lenta <- data$saleslenta_ts <- ts(log(lenta), frequency=12, start=c(2007,1))acf_all<-acf(fit$residuals,plot=FALSE,lag.max=72)$acfacf_per<-acf_all[seq(1,length(acf_all),13)]fit<-arima(lenta_ts, order=c(0,1,1), seasonal=c(1,0,0))library(forecast)cwp <- function (object){## cwp <--> ``coefficients with p-values''#coef <- coef(object)if (length(coef) > 0) {mask <- object$masksdev <- sqrt(diag(vcov(object)))t.rat <- rep(NA, length(mask))t.rat[mask] <- coef[mask]/sdevpt <- 2 * pnorm(-abs(t.rat))setmp <- rep(NA, length(mask))setmp[mask] <- sdevsum <- rbind(coef, setmp, t.rat, pt)dimnames(sum) <- list(c("coef", "s.e.", "t ratio", "pvalue"),names(coef))return(sum)} else return(NA)}## The next step is so on to put into the function for theincrease of effect, and then decline## So a1 is for grow and a2 for slow down.interv_data<-rep(0,nrow(data))interv<-data.frame(row(as.matrix(interv_data)),interv_data)names(interv)<-c('n','var1')crisis_value<-21c1.zmin<-1000000000a1<-seq(0.05, 1, 0.05)a2<-seq(0.05, 1, 0.05)136for(k in crisis_value:nrow(interv)) {interv$var1<-0interv$var1[k:nrow(interv)]<-1for(i in a1) {interv$cb<-interv$var1interv$cb[crisis_value:interv$n[min(interv$n[interv$var1>0])]]<1-i*(min(interv$n[interv$var1>0])interv$n[crisis_value:interv$n[min(interv$n[interv$var1>0])]])/(interv$n[min(interv$n[interv$var1>0])]-crisis_value+1)for(j in a2) {interv$cb[interv$n>min(interv$n[interv$var1>0])]<-1j*(interv$n[interv$n>min(interv$n[interv$var1>0])]min(interv$n[interv$var1>0]))/(max(interv$n)min(interv$n[interv$var1>0])+1)res.1<-arima(lenta_ts,xreg=data.frame(interv$cb),order=c(0,1,0), seasonal=c(1,0,0))c1.z<sum(res.1$residuals*res.1$residuals)/length(res.1$residuals)if(c1.z<c1.zmin){c1.zmin<-c1.zc1.a_out<-ic2.a_out<-jmodelmin<-res.1$armamodel<-res.1interv_cc<-data.frame(interv$cb)}}}}c1.zminc1.a_outc2.a_outmodelminwrite.table(interv_cc,'interv_20130827_manual.csv',sep=";",dec=",")##Autointerv<-data.frame(row(as.matrix(data_new[,3])),data_new[,3])names(interv)<-c('n','var1')c1.zmin<-1000000000a1<-seq(0.05, 1, 0.05)a2<-seq(0.05, 1, 0.05)for(k in 34:nrow(interv)) {interv$var1<-0interv$var1[k:nrow(interv)]<-1for(i in a1) {interv$cb<-interv$var1interv$cb[34:interv$n[min(interv$n[interv$var1>0])]]<-1i*(min(interv$n[interv$var1>0])interv$n[34:interv$n[min(interv$n[interv$var1>0])]])/(interv$n[min(interv$n[interv$var1>0])]-34+1)137for(j in a2) {interv$cb[interv$n>min(interv$n[interv$var1>0])]<-1j*(interv$n[interv$n>min(interv$n[interv$var1>0])]min(interv$n[interv$var1>0]))/(max(interv$n)min(interv$n[interv$var1>0])+1)res.1<-auto.arima(lenta_ts, xreg=data.frame(interv$cb),max.p =4, max.q = 4,max.P = 4, max.Q = 4)c1.z<sum(res.1$residuals*res.1$residuals)/length(res.1$residuals)if(c1.z<c1.zmin){c1.zmin<-c1.zc1.a_out<-ic2.a_out<-jmodelmin<-res.1$armamodel<-res.1interv_cc<-data.frame(interv$cb)}}}}zminc1.a_outc2.a_outmodelminwrite.table(interv_cc,'interv_20130827_auto.csv',sep=";",dec=",")write.table(data_new,'lenta_10_interp.csv',sep=';',dec=',')138Приложение 2.