Диссертация (1149314), страница 15
Текст из файла (страница 15)
Б.Ки.–Мир. 1966. 300 с.54. Цветков Н.В., Хрипунов А.К., Астапенко Э.П., Диденко С.А. Оптические иэлектрические свойства эфиров целлюлозы с алифатическими боковымизаместителями // Высокомолекулярные соединения, Серия А. 1995. Т. 37,№ 8, с. 1306-1313.55. Tsvetkov N.V., Andreeva L.N., Bushin S.V., Alyab'eva V.P., Strelina I.A.,Ivanova V.O., Lebedeva E.V., Matveeva N.G., Girbasova N.V., Bilibin A.Y.Synthesis and molecular properties of polymers with asymmetrically substitutedside dendrons based on L-aspartic acid // Polymer Science - Series A. 2010.
V.52. I. 7. P. 684-692.- 119 56. Любина С. Я., Кленин С. И., Стрелина И. А., Троицкая А. В., Хрипунов А. К.,УриновЭ.У.Гидродинамическиеиоптическиехарактеристикимакромолекул целлюлозы в кадоксене // Высокомолек. соед. А. 1977. Т. 19.№ 2. С. 244-249.57. Tsvetkov N.V., Andreeva L.N., Lebedeva E.V., Strelina I.A., Lezov A.A.,Podseval'nikova A.N., Mikusheva N.G., Ivanova V.O., Makarov I.A., Zorin I.M.,Bilibin A.Yu. Optical, dynamic, and electro-optical properties of poly(N-acryloyl11- aminoundecanoic acid) in solutions // Polymer Science - Series A.
2011. V. 53.I. 8. P. 666-677.58. KuhnW.,GrünF.BeziehungswischenelastichenKonstantenundDehnungsdoppel brechung bochelestisher Stoffe // Kolloid Ztscher. 1942. B. 101.№ 3. S. 248-271.59. Maxwell J. Treatise on electricity and magnetism. London. 1873. 65 p.60. Вукс М.Ф. Рассеяние света в газах, жидкостях и растворах. Л.: Изд-воЛенингр.
ун-та. 1977. 320 с.61. Цветков В.Н., Коломиец И.П., Лезов А.В., Степченков А.С. Применениемодуляцииэллиптическойэлектрическогодвойногополяризациисветалучепреломлениядлярастворовисследованияполимероввимпульсных полях // Высокомолекулярные соединения А, 1983, т. 25, №6, с.1327-1331.62. Лезов А.В., Цветков В.Н. Применение синусоидальных импульсов в эффектеКерра для исследования динамики полимерных молекул в проводящихрастворах // Высокомолекулярные соединения А, 1990, т.
32, №1, с. 162.63. Berne B.J., Pecora R. Dynamic Light Scattering with applications to chemistry,biology, and physics. Wiley-interscience publication John Wiley and sons. inc.New York - London - Sydney - Toronto. 1990. 376p.64. Schuck P. Size-distribution analysis of macromolecules by sedimentation velocityultracentrifugation and Lamm equation modeling // Biophys.
J. 2000. V. 78. I. 3.P.1606–1619.- 120 65. Schuck P. On computational approaches for size-and-shape distributions fromsedimentation velocity analytical ultracentrifugation // Eur. Biophys. J. 2010. V.39. I. 8. P. 1261–1275.66. O. Kratky, H. Leopold, H. Stabinger The determination of the partial specificvolume of proteins by the mechanical oscillator technique // Methods Enzymol.1973. V. 27 p. 98–110.67. Kim, T.-H., Doe, C., Kline, S.R., Choi, S.-M. Water-redispersible isolated singlewalled carbon nanotubes fabricated by in situ polymerization of micelles //Advanced Materials. 2007. V.
19. I. 7. P. 929-933.68. Rakesh S., Sakthidharan C.P., Sarojadevi M., Sundararajan P.R. Monomer selfassembly and organo-gelation as a route to fabricate cyanate ester resins and theirnanocomposites with carbon nanotubes // European Polymer Journal. 2015.
V.68. p. 161-174.69. Kline, S.R. Polymerization of rodlike micelles // Langmuir. 1999. V. 15. I. 8.p. 2726-2732.70. Kuntz, D.M., Walker, L.M. Solution behavior of rod-like polyelectrolytesurfactant aggregates polymerized from wormlike micelles // Journal of PhysicalChemistry B. 2007. V. 111 I.23. p. 6417-6424.71. Bilibin A.Y., Shcherbinina T.M., Kondratenko Y.A., Zorina N.A., Zorin I.M.Micellar polymerization of alkylammonium 2-acrylamido-2-methylpropanesulfonates in the solvents of different polarities and properties of resultingpolyelectrolyte-surfactant complexes //Colloid and Polymer Science. 2015. V.293.
I. 4. p. 1215-1225.72. Kristen N., Von Klitzing R. Effect of polyelectrolyte/surfactant combinations onthe stability of foam films // Soft Matter. 2010. V. 6 I. 5. p. 849-861.73. Vehlow D., Schmidt R., Gebert A., Siebert M., Lips K.S., Müller M. Polyelectrolytecomplex based interfacial drug delivery system with controlled loading andimproved release performance for bone therapeutics // Nanomaterials. 2016. V.
6.I. 3. art. no. 53, p. 2174. Bain C.D., Claesson P.M., Langevin D., Meszaro R., Nylander T.,Stubenrauch C., Titmuss S., von Klitzing R. Complexes of surfactants with- 121 oppositely charged polymers at surfaces and in bulk // Advances in Colloid andInterface Science. 2010.
V. 155 I. 1-2. p. 32-49.75. Chen L., Lu G. Novel amperometric biosensor based on composite film assembledby polyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin //Sensors and Actuators B: Chemical. 2007. V. 121 I. 2. p. 423-42976. Zorin I., Scherbinina T., Fetin P., Makarov I., Bilibin A. Novel surfactant-selectivemembrane electrode based on polyelectrolyte- surfactant complex // Talanta. 2014.V.
130. p. 177-181.77. Bilibin A.Yu., Sukhanova T.M., Kondratenko Yu.A., Zorin I.M. N-Alkylammonium 2-acrylamido-2-methylpropanesulfonates: Synthesis, properties, andpolymerization // Polymer Science - Series B. 2013. V. 55 I. 1-2. p. 22-30.78. Pavlov G.M., Perevyazko I., Schubert U.S. Velocity sedimentation and intrinsicviscosity analysis of polystyrene standards with a wide range of molar masses //Macromolecular Chemistry and Physics. 2010.
V. 211 I. 12. p. 1298-1310.79. Pavlov G.M., Perevyazko I.Y., Okatova O.V., Schubert U.S. Conformationparameters of linear macromolecules from velocity sedimentation and otherhydrodynamic methods // Methods. 2011. V. 54 I. 1. p. 124-135.80. ЩербининаТ.М.Полимеризациян-алкиламмоний2-акриламидо-2-метилпропансульфонатов в мицеллярных и немицеллярных растворах: дис.… канд. хим. наук: 02.00.06 / Щербинина Татьяна Михайловна.
– СанктПетербург, 2013. – 162 стр.81. Odian G. Principles of Polymerization. 4th ed. City University of New York.2004. 812 p.82. Bilibin A. Yu, Shcherbinina T. M., Girbasova N. V., Lebedev V. T., Kulvelis Yu. V.,Molchanov V. S., Zorin I. M. Colloidal properties of polymerizable counterionsurfmers solutions based on alkylamino 2-acrylamido-2-methylpropanesulfonatesin different solvents // Designed Monomers and Polymers. 2016.
V. 19. I. 5. P. 369380.83. Sutherland E., Mereer S.M., Everist M., Leaist D.G. Diffusion in solutions ofmicelles. What does dynamic light scattering measure? // Journal of Chemical andEngineering Data. 2009. V. 54 I. 2. p. 272-278.- 122 84. Norisuye T., Motowoka M., Fujita H. Wormlike Chains Near the Rod Limit:Translational Friction Coefficient // Macromolecules. 1979. V. 12 I. 2. p. 320-323.85. Bae D.H., Choi H.J., Choi K., Nam J.D., Islam M.S., Kao N. Fabrication ofphosphate microcrystalline rice husk based cellulose particles and theirelectrorheological response // Carbohydrate Polymers.
2017. V. 165. P. 247-254.86. Virtanen T., Svedström K., Andersson S., Tervala L., Torkkeli M., Knaapila M.,Kotelnikova N., Maunu S.L., Serimaa R. A physico-chemical characterisation ofnew raw materials for microcrystalline cellulose manufacturing // Cellulose. 2012.V. 19. P.
219-235.87. Cheng H.N., Dowd M.K., Shogren R.L., Biswas A. Conversion of cottonbyproducts to mixed cellulose esters // Carbohydrate Polymers. 2011. V. 86.P. 1130– 1136.88. Kongruang S. Bacterial cellulose production by Acetobacter xylinum strains fromagricultural waste products // Applied Biochem. Biotechnol. 2008. V.148. P.245–256.89. Le Bras D., Strømme M., Mihranyan A. Characterization of dielectric propertiesof nanocellulose from wood and algae for electrical insulator applications // Journalof Physical Chemistry B. 2015. V. 119.
I. 18. P. 5911-5917.90. Deng Z., Jung J., Simonsen J., Zhao Y. Cellulose nanomaterials emulsioncoatings for controlling physiological activity, modifying surface morphology, andenhancing storability of postharvest bananas (Musa acuminate) // Food Chemistry.2017. V.
232. P. 359-368.91. Liyaskina E., Revin V., Paramonova E., Nazarkina, M., Pestov N., Revina N.,Kolesnikova S. Nanomaterials from bacterial cellulose for antimicrobial wounddressing // Journal of Physics: Conference Series. 2017. V. 784. I. 1. Articlenumber 012034.92. Wei L., Agarwal U.P., Hirth K.C., Matuana L.M., Sabo R.C., Stark N.M.Chemical modification of nanocellulose with canola oil fatty acid methyl ester //Carbohydrate Polymers. 2017. V. 169. P.
108-116.- 123 93. Wang P., Tao B.Y. Synthesis of cellulose-fatty acid esters for use as biodegradableplastics // Journal of Environmental Polymer Degradation. 1995. V. 3. I. 2. P. 115119.94. Chamkouri N., Niazi A., Zare-Shahabadi V. Development of a novel pH sensorbased upon Janus Green B immobilized on triacetyl cellulose membrane:Experimental design and optimization // Spectrochimica Acta - Part A: Molecularand Biomolecular Spectroscopy.
2016. V. 156. P. 105-111.95. Borgan R.T., Brewer R.J. Cellulose esters, organic // Encyclopedia PolymerScience and Technology. 2nd edn. 1989. Wiley, New York. V.3. P.158–181.96. Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. ComprehensiveCellulose Chemistry. V.2. Wiley-VCG Verlag, Germany. 1998. 414 p.97. Montaseri H., Yousefinejad S. Design of an optical sensor for the determination ofcysteine based on the spectrophotometric method in a triacetylcellulose film: PCANN application // Analytical Methods. 2014.
V. 6. I. 21. P. 8482-8487.98. Jiang Y., Ding E., Li G. Study on transition characteristics of PEG/CDA solid–solid phase change materials // Polymer. 2002. V. 43. I. 1. P. 117–122.99. Chen W., Weng W., Fu M. Hydroxypropyl cellulose-based esters for thermal energystorageby grafting with palmitic-stearic binary acids // Journal of Applied PolymerScience. 2017. V. 134. I. 24. Article number 44949.100. Степина Н.Д., Клечковская В.В., Янусова Л.Г., Фейгин Л.А., ТолстихинаА.Л., Склизкова В.П., Хрипунов А.К., Баклагина Ю.Г., Кудрявцев В.В.Особенности формирования пленок Ленгмюра-Блоджетт из растворовгребнеобразных полимеров // Кристаллография.















