Диссертация (1145499), страница 49
Текст из файла (страница 49)
22, № 3. P. 960.328294. Garcia M.A. Surface plasmons in metallic nanoparticles: fundamentals andapplications // J. Phys. D. Appl. Phys. 2011. Vol. 44. P. 283001.295. Pitarke J.M., Silkin V.M., Chulkov E. V., Echenique P.M. Surface plasmonsin metallic structures // J. Opt. A Pure Appl. Opt. 2005. Vol. 7. P. S73–S84.296. Morton S.M., Jensen L. Understanding the molecule-surface chemicalcoupling in SERS. // J. Am. Chem.
Soc. 2009. Vol. 131, № 11. P. 4090–4098.297. Jensen L., Aikens C.M., Schatz G.C. Electronic structure methods forstudying surface-enhanced Raman scattering. // Chem. Soc. Rev. 2008. Vol.37, № 5. P. 1061–1073.298. Xu H.X., Bjerneld E.J., Käll M., Börjesson L. Spectroscopy of singlehemoglobin molecules by surface enhanced Raman scattering // Phys. Rev.Lett. 1999.
Vol. 83. P. 4357–4360.299. Xu H.X., Aizpurua J., Kall M., Apell P. Electromagnetic contributions tosingle-molecule sensitivity in surface-enhanced Raman scattering // Phys.Rev. E. 2000. Vol. 62, № 3. P. 4318–4324.300. Gupta R., Weimer W.A. High enhancement factor gold films for surfaceenhanced Raman spectroscopy // Chem. Phys.
Lett. 2003. Vol. 374, № 3-4.P. 302–306.301. Liu Y.-C., Yu C.-C., Sheu S.-F. Improved surface-enhanced Ramanscattering on optimum electrochemically roughened silver substrates. // Anal.Chim. Acta. 2006. Vol. 577, № 2. P. 271–275.302. Jacobson M.L., Rowlen K.L. Photo-dynamics on thin silver films // Chem.Phys. Lett.
2005. Vol. 401, № 1-3. P. 52–57.303. Dick L. a., McFarland A.D., Haynes C.L., Van Duyne R.P. Metal film overnanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy(SERS): Improvements in surface nanostructure stability and suppression ofirreversible loss // J. Phys. Chem. B. 2002.
Vol. 106. P. 853–860.304. Santoro G., Yu S., Schwartzkopf M., Zhang P., Koyiloth Vayalil S., RischJ.F.H., Rübhausen M.A., Hernández M., Domingo C., Roth S. V. Silversubstrates for surface enhanced Raman scattering: Correlation betweennanostructure and Raman scattering enhancement // Appl. Phys. Lett. 2014.Vol. 104, № 24.
P. 243107.305. Bashouti M.Y., Manshina A., Povolotckaia A., Povolotskiy A., Kireev A.,Yuriy P., Mačković M., Spiecker E., Koshevoy I.O., Tunik S., ChristiansenS. Direct Laser Writing of µ-chips Based on Hybrid C-Au-Ag Nanoparticlesfor Express Analysis of Hazardous and Biological Substances // Lab Chip.2015. P.
1742–1747.329306. Yamamoto Y.S., Itoh T., Sato H., Ozaki Y. A simple method for evaluationof optical scattering effect on the Raman signal of a sample beneath anIntralipid layer // Vib. Spectrosc. 2014. Vol. 74. P. 132–136.307. Manshina A., Povolotskiy A., Povolotckaia A., Kireev A., Petrov Y., TunikS. Annealing effect: Controlled modification of the structure, compositionand plasmon resonance of hybrid Au-Ag/C nanostructures // Appl. Surf. Sci.2015.
Vol. 353. P. 11–16.308. Bastin G.F., Heijligers H.J.. Electron Probe Quantification. New York andLondon: Plenum Press, 1991. 145 p.309. Sitko R., Zawisza B., Malicka E. Graphene as a new sorbent in analyticalchemistry // TrAC - Trends Anal.
Chem. 2013. Vol. 51. P. 33–43.310. Bi H., Xie X., Yin K., Zhou Y., Wan S., He L., Xu F., Banhart F., Sun L.,Ruoff R.S. Spongy graphene as a highly efficient and recyclable sorbent foroils and organic solvents // Adv. Funct. Mater. 2012. Vol. 22, № 21. P. 4421–4425.311. Modern Electrochemical Methods in Nano, Surface and Corrosion Science /ed. Aliofkhazraei M. InTech, 2014.312.
Joo S.H., Choi S.J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R. Orderednanoporous arrays of carbon supporting high dispersions of platinumnanoparticles. // Nature. 2001. Vol. 412, № 6843. P. 169–172.313. Su F.B., Zeng J.H., Bao X.Y., Yu Y.S., Lee J.Y., Zhao X.S. Preparation andcharacterization of highly ordered graphitic mesoporous carbon as a Ptcatalyst support for direct methanol fuel cells // Chem. Mater. 2005. Vol. 17,№ 15. P.
3960–3967.314. Antolini E., Gonzalez E.R. Ceramic materials as supports for lowtemperature fuel cell catalysts // Solid State Ionics. 2009. Vol. 180, № 9-10.P. 746–763.315. Maiyalagan T., Dong X., Chen P., Wang X. Electrodeposited Pt on threedimensional interconnected graphene as a free-standing electrode for fuel cellapplication // J. Mater. Chem.
2012. Vol. 22, № 12. P. 5286.316. Santos A., Kumeria T., Losic D. Nanoporous Anodic Alumina: A VersatilePlatform for Optical Biosensors // Materials (Basel). 2014. P. 4297–4320.317. Kumeria T., Santos A., Losic D. Nanoporous anodic alumina platforms:engineered surface chemistry and structure for optical sensing applications. //Sensors (Basel). 2014. Vol. 14, № 7. P. 11878–11918.318.
Santos A., Montero-Moreno J.M., Bachmann J., Nielsch K., Formentín P.,Ferré-Borrull J., Pallarès J., Marsal L.F. Understanding pore rearrangementduring mild to hard transition in bilayered porous anodic alumina membranes// ACS Appl. Mater. Interfaces. 2011. Vol. 3, № 6. P. 1925–1932.330319. Neubacher H., Mey I., Carnarius C., Lazzara T.D., Steinem C.Permeabilization assay for antimicrobial peptides based on pore-spanninglipid membranes on nanoporous alumina. // Langmuir. 2014.
Vol. 30, № 16.P. 4767–4774.320. Santos A., Macías G., Ferré-Borrull J., Pallarès J., Marsal L.F.Photoluminescent enzymatic sensor based on nanoporous anodic alumina //ACS Appl. Mater. Interfaces. 2012. Vol. 4, № 7. P. 3584–3588.321. Yanagishita T., Nishio K., Masuda H. Antireflection polymer hole arraystructures by imprinting using metal molds from anodic porous alumina //Appl. Phys. Express. 2008.
Vol. 1, № 6. P. 0670041–0670043.322. Rahman M.M., Marsal L.F., Pallarès J., Ferré-Borrull J. Tuning the photonicstop bands of nanoporous anodic alumina-based distributed bragg reflectorsby pore widening // ACS Appl. Mater. Interfaces. 2013. Vol. 5, № 24. P.13375–13381.323. Ferré-Borrull J., Rahman M.M., Pallarès J., Marsal L.F. Tuning nanoporousanodic alumina distributed-Bragg reflectors with the number of anodizationcycles and the anodization temperature. // Nanoscale Res. Lett. 2014. Vol. 9,№ 1. P. 416.324.
Ji N., Ruan W., Wang C., Lu Z., Zhao B. Fabrication of silver decoratedanodic aluminum oxide substrate and its optical properties on surfaceenhanced Raman scattering and thin film interference. // Langmuir. 2009.Vol. 25, № 19. P. 11869–11873.325. Velleman L., Bruneel J.-L., Guillaume F., Losic D., Shapter J.G. Ramanspectroscopy probing of self-assembled monolayers inside the pores of goldnanotube membranes. // Phys. Chem. Chem.
Phys. 2011. Vol. 13, № 43. P.19587–19593.326. Lee J., Ju H., Yi Y., Lee J., Uhm S., Lee J.K., Lee H.J. High-DensityNanoporous Structures for Enhanced Electrocatalysis // J. Phys. Chem. C.2012. Vol. 116, № 4. P. 2915–2918.327. Leontiev A.P., Brylev O.A., Napolskii K.S. Arrays of rhodium nanowiresbased on anodic alumina: Preparation and electrocatalytic activity for nitratereduction // Electrochim. Acta. 2015. Vol. 155. P. 466–473.328. Liu L., Pippel E., Scholz R., Gösele U. Nanoporous Pt-Co alloy nanowires:Fabrication, characterization, and electrocatalytic properties // Nano Lett.2009. Vol. 9.
P. 4352–4358.329. Wong-ek K., Eiamchai P., Horprathum M., Patthanasettakul V.,Limnonthakul P., Chindaudom P., Nuntawong N. Silver nanoparticlesdeposited on anodic aluminum oxide template using magnetron sputtering forsurface-enhanced Raman scattering substrate // Thin Solid Films. 2010. Vol.518, № 23. P. 7128–7132.331330. Zhang L., Zhang P., Fang Y. Magnetron sputtering of silver nanowires usinganodic aluminum oxide template: a new active substrate of surface enhancedRaman scattering and an investigation of its enhanced mechanism. // Anal.Chim.
Acta. 2007. Vol. 591, № 2. P. 214–218.331. Zhang W., Qiu T., Qu X.P., Chu P.K. Atomic layer deposition of platinumthin films on anodic aluminium oxide templates as surface-enhanced Ramanscattering substrates // Vacuum. 2013. Vol. 89, № 1. P. 257–260.332.
An L., Zhao T.S., Shen S.Y., Wu Q.X., Chen R. Alkaline direct oxidationfuel cell with non-platinum catalysts capable of converting glucose toelectricity at high power output // J. Power Sources. 2011. Vol. 196, № 1. P.186–190.333. Basu D., Basu S. Synthesis, characterization and application of platinumbased bi-metallic catalysts for direct glucose alkaline fuel cell.
//Electrochim. Acta. 2011. Vol. 56, № 17. P. 6106–6113.334. Tominaga M., Shimazoe T., Nagashima M., Kusuda H., Kubo A., KuwaharaY., Taniguchi I. Electrocatalytic oxidation of glucose at gold-silver alloy,silver and gold nanoparticles in an alkaline solution // J. Electroanal. Chem.2006. Vol. 590, № 1. P. 37–46.335. Oncescu V., Erickson D. High volumetric power density, non-enzymatic,glucose fuel cells. // Sci. Rep. 2013.
Vol. 3. P. 1226.336. Kerzenmacher S., Ducrée J., Zengerle R., von Stetten F. Energy harvestingby implantable abiotically catalyzed glucose fuel cells // J. Power Sources.2008. Vol. 182, № 1. P. 1–17.337. Kerzenmacher S., Kraling U., Metz T., Zengerle R., von Stetten F. Apotentially implantable glucose fuel cell with Raney-platinum film electrodesfor improved hydrolytic and oxidative stability // J. Power Sources. 2011.Vol. 196, № 3.
P. 1264–1272.338. García de Abajo F.J. Graphene Plasmonics: Challenges and Opportunities //ACS Photonics. 2014. Vol. 1, № 3. P. 135–152.339. Mao H.Y., Laurent S., Chen W., Akhavan O., Imani M., Ashkarran A.A.,Mahmoudi M. Graphene: Promises, facts, opportunities, and challenges innanomedicine // Chem. Rev. 2013. Vol. 113, № 5.
P. 3407–3424.340. Butler S.Z., Hollen S.M., Cao L., Cui Y., Gupta J. a., Gutiérrez H.R., HeinzT.F., Hong S.S., Huang J., Ismach A.F., Johnston-Halperin E., Kuno M.,Plashnitsa V. V., Robinson R.D., Ruoff R.S., Salahuddin S., Shan J., Shi L.,Spencer M.G., et al. Progress, challenges, and opportunities in twodimensional materials beyond graphene // ACS Nano. 2013. Vol.