Диссертация (1145499), страница 48
Текст из файла (страница 48)
Mater. 2011. Vol. 23, № 39. P. 4497–4503.236. Бриггс Д., Сих М.П. Анализ поверхности методами оже - ирентгеновской фотоэлектронной спектроскопии. Москва: Мир, 1987.600 p.237. Mizokawa Y., Miyasato T., Nakamura S., Geib K.M., Wilmsen C.W.Comparison of the CKLL first-derivative auger spectra from XPS and AESusing diamond, graphite, SiC and diamond-like-carbon films // Surf. Sci.1987. Vol.
182, № 3. P. 431–438.238. Britvin S.N., Lotnyk A. Water-soluble phosphine capable of dissolvingelemental gold: The missing link between 1,3,5-triaza-7-phosphaadamantane(PTA) and Verkade’s ephemeral ligand // J. Am. Chem. Soc. 2015. Vol.
137,№ 16. P. 5526–5535.239. Nepijko S.A., Pippel E., Woltersdorf J. Dependence of lattice parameter onparticle size // Phys. Status Solidi. 1980. Vol. 61, № 2. P. 469–475.324240. Diehm P.M., Ágoston P., Albe K. Size-dependent lattice expansion innanoparticles: Reality or anomaly? // ChemPhysChem. 2012. Vol. 13, № 10.P. 2443–2454.241. Nethravathi C., Rajamathi J.T., Ravishankar N., Shivakumara C., RajamathiM.
Graphite oxide-intercalated anionic clay and its decomposition tographene-inorganic material nanocomposites // Langmuir. 2008. Vol. 24, №15. P. 8240–8244.242. Kuc A., Zhechkov L., Patchkovskii S., Seifert G., Heine T. Hydrogen sievingand storage in fullerene intercalated graphite // Nano Lett. 2007. Vol.
7, № 1.P. 1–5.243. Liu P., Gong K., Xiao P., Xiao M. Preparation and characterization ofpoly(vinyl acetate)-intercalated graphite oxide nanocomposite // J. Mater.Chem. 2000. Vol. 10, № 4. P. 933–935.244. Hong Y., Wang Z., Jin X. Sulfuric acid intercalated graphite oxide forgraphene preparation. // Sci. Rep. 2013. Vol. 3. P. 3439.245.
Xiao P., Xiao M., Liu P., Gong K. Direct synthesis of a polyanilineintercalated graphite oxide nanocomposite // Carbon N. Y. 2000. Vol. 38, №4. P. 626–628.246. Divittorio S.L., Dresselhaus M.S., Dresselhaus G. a Model for Disorder inFluorine-Intercalated Graphite // J. Mater. Res. 1993. Vol.
8, № 7. P. 1578–1585.247. Ziambaras E., Kleis J., Schröder E., Hyldgaard P. Potassium intercalation ingraphite: A van der Waals density-functional study // Phys. Rev. B Condens. Matter Mater. Phys. 2007. Vol. 76, № 15.248. Ebert L.B. Intercalation Compounds of Graphite // Annu. Rev. Mater. Sci.1976. Vol. 6, № 1. P. 181–211.249.
Dresselhaus M.S., Dresselhaus G. Advances in Physics Intercalationcompounds of graphite // Adv. Phys. 1981. Vol. 51, № 1. P. 1–186.250. Yoshida A., Hishiyama Y., Inagaki M. Exfoliated graphite from variousintercalation compounds // Carbon N.
Y. 1991. Vol. 29, № 8. P. 1227–1231.251. Purewal J. Hydrogen Adsorption by Alkali Metal Graphite IntercalationCompounds. California Institute of Technology, 2010. 212 p.252. Huang X., Qi X., Boey F., Zhang H. Graphene-based composites // Chem.Soc. Rev. 2012. Vol. 41, № 2. P. 666–686.253. Stankovich S., Dikin D.A., Dommett G.H., Kohlhaas K.M., Zimney E.J.,Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based compositematerials // Nature. 2006. Vol. 442, № 7100.
P. 282–286.325254. An X., Yu J.C. Graphene-based photocatalytic composites // RSC Adv. 2011.Vol. 1, № 8. P. 1426.255. Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C. Graphenebased antibacterial paper // ACS Nano. 2010. Vol. 4, № 7. P. 4317–4323.256. Biris A.R., Pruneanu S., Pogacean F., Lazar M.D., Borodi G., Ardelean S.,Dervishi E., Watanabe F., Biris A.S. Few-layer graphene sheets withembedded gold nanoparticles for electrochemical analysis of adenine // Int.
J.Nanomedicine. 2013. Vol. 8. P. 1429–1438.257. Biris A.S., Pogacean F., Biris A.R., Coros M., Lazar M.D., Watanabe F.,Pruneanu S., Al said S.A.F., Kannarpady G. Direct electrochemical oxidationof S-captopril using gold electrodes modified with graphene-AuAgnanocomposites // Int. J. Nanomedicine. 2014. P. 1111.258. Karfunkel H.R., Dressler T. New hypothetical carbon allotropes ofremarkable stability estimated by MNDO solid-state SCF computations // J.Am.
Chem. Soc. 1992. Vol. 114, № 7. P. 2285–2288.259. Anderson H.L., Faust R., Rubin Y., Diederich F. Fullerene–AcetyleneHybrids: On the Way to Synthetic Molecular Carbon Allotropes // Angew.Chemie Int. Ed. 1994. Vol. 33, № 13. P. 1366–1368.260. Diederich F., Rubin Y. Synthetic Approaches toward Molecular andPolymeric Carbon Allotropes // Angew. Chemie Int. Ed. English. 1992. Vol.31, № 9. P. 1101–1123.261. Hirsch A.
The era of carbon allotropes. // Nat. Mater. 2010. Vol. 9, № 11. P.868.262. Baughman R.H., Eckhardt H., Kertesz M. Structure-property predictions fornew planar forms of carbon: Layered phases containing sp$^{2}$ and spatoms // J. Chem. Phys. 1987. Vol. 87, № 11. P. 6687.263. Peng Q., Dearden A.K., Crean J., Han L., Liu S., Wen X., De S. Newmaterials graphyne, graphdiyne, graphone, and graphane: Review ofproperties, synthesis, and application in nanotechnology // Nanotechnology,Science and Applications. 2014. Vol.
7, № 2. P. 1–29.264. Haley M.M. Synthesis and properties of annulenic subunits of graphyne andgraphdiyne nanoarchitectures // Pure Appl. Chem. 2008. Vol. 80, № 3. P.519–532.265. Wan W., Brand S., Pak J., Haley M. Synthesis of expanded graphdiynesubstructures // Chemistry.
2000. Vol. 6, № 11. P. 2044–2052.266. Li Z., Smeu M., Rives A., Maraval V., Chauvin R., Ratner M. a, Borguet E.Towards graphyne molecular electronics. // Nat. Commun. 2015. Vol. 6. P.6321.326267. Kou J., Zhou X., Lu H., Wu F., Fan J. Graphyne as the membrane for waterdesalination.
// Nanoscale. 2014. Vol. 6, № 3. P. 1865–1870.268. Li Y., Xu L., Liu H., Li Y. Graphdiyne and graphyne: from theoreticalpredictions to practical construction // Chem. Soc. Rev. 2014. Vol. 43, № 8.P. 2572.269. Zhang S., Zhou J., Wang Q., Chen X., Kawazoe Y., Jena P. Penta-graphene:A new carbon allotrope // Proc. Natl. Acad. Sci.
U. S. A. 2015. Vol. 112, №8. P. 2372–2377.270. Yin W.-J., Xie Y.-E., Liu L.-M., Wang R.-Z., Wei X.-L., Lau L., Zhong J.X., Chen Y.-P. R-graphyne: a new two-dimensional carbon allotrope withversatile Dirac-like point in nanoribbons // J. Mater. Chem.
A. 2013. Vol. 1,№ 17. P. 5341–5346.271. Sharma B.R., Manjanath A., Singh A.K. pentahexoctite: A new twodimensional allotrope of carbon // Sci. Rep. 2014. Vol. 4. P. 7164.272. Yang L., He H.Y., Pan B.C. Theoretical prediction of new carbon allotropes.// J. Chem. Phys. 2013. Vol. 138, № 2. P. 024502.273. Kim B.G., Sim H., Park J. C4 Carbon allotropes with triple-bonds predictedby first-principles calculations // Solid State Commun. 2013. Vol. 169. P. 50–56.274. Фольмер М.
Кинетика образования новой фазы. Москва: Наука, 1986.208 p.275. Щекин А.К., Куни Ф.М., Татьяненко Д.В. Термодинамика нуклеации нанерастворимых макроскопических ядрах. Санкт-Петербург:Издательство СПбГУ, 2002. 52 p.276. Френкель Я.И. Собрание избранных трудов. Том 3. Москва; Ленинград:Изд-во АН СССР, 1959. 463 p.277. Гиббс Д.В. Термодинамика. Статистическая механика. Москва: Наука,1982. 584 p.278. Барыбин А.А., Бахтина В.А., Томилин В.И., Томилина Н.П.
Физикохимия наночастиц, наноматериалов и наноструктур / ed. ОвчинниковС.Г., Назаров Г.Г. Красноярск: ООО “Проспект,” 2015. 208 p.279. Shah P.S., Husain S., Johnston K.P., Korgel B. a. Role of steric stabilizationon the arrested growth of silver nanocrystals in supercritical carbon dioxide //J. Phys. Chem. B. 2002. Vol. 106, № 47. P. 12178–12185.280.
Edwards R.S., Coleman K.S. Graphene film growth on polycrystalline metals// Acc. Chem. Res. 2013. Vol. 46, № 1. P. 23–30.327281. Seah C.-M., Chai S.-P., Mohamed A.R. Mechanisms of graphene growth bychemical vapour deposition on transition metals // Carbon N. Y. Elsevier Ltd,2014. Vol. 70. P. 1–21.282.
Pluchery O., Coustel R., Witkowski N., Borensztein Y. Adsorption ofphenylacetylene on Si(100)-2 x 1: kinetics and structure of the adlayer. // J.Phys. Chem. B. 2006. Vol. 110, № 45. P. 22635–22643.283. Joo S.W., Kim K. Adsorption of phenylacetylene on gold nanoparticlesurfaces investigated by surface-enhanced Raman scattering // J. RamanSpectrosc. 2004. Vol. 35, № 7. P.
549–554.284. Михайлов Е.Ф., Власенко С.С. Образование фрактальных структур вгазовой фазе // Успехи физических наук. 1995. Vol. 165, № 3. P. 263–283.285. Тауц Я. Фото- и термоэлектрические явления в полупроводниках.Москва, 1962. 252 p.286. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Издание 2-. Москва:Наука, 1964. 568 p.287. Тялина В.А., Мищенко С.В., Тялин Ю.И. Электрические поля,создаваемые двойниковыми дефектами // Вестник Тамбовскогогосударственного технического университета.
2013. Vol. 19, № 2. P.406–412.288. Khlebtsov N.G. Optics and biophotonics of nanoparticles with a plasmonresonance // Quantum Electron. 2008. Vol. 38, № 6. P. 504–529.289. Lane L.A., Qian X., Nie S. SERS Nanoparticles in Medicine: From LabelFree Detection to Spectroscopic Tagging // Chem. Rev. 2015.
P.150827155936004.290. Deng W., Xie F., Baltar H.T.M.C.M., Goldys E.M. Metal-enhancedfluorescence in the life sciences: here, now and beyond // Phys. Chem. Chem.Phys. 2013. Vol. 15, № 38. P. 15695–15708.291. Fischer S., Hallermann F., Eichelkraut T., von Plessen G., Krämer K.W.,Biner D., Steinkemper H., Hermle M., Goldschmidt J.C. Plasmon enhancedupconversion luminescence near gold nanoparticles–simulation and analysisof the interactions // Opt.
Express. 2012. Vol. 20, № 1. P. 271.292. Wu D.M., García-Etxarri A., Salleo A., Dionne J.A. Plasmon-enhancedupconversion // Journal of Physical Chemistry Letters. 2014. Vol. 5, № 22. P.4020–4031.293. Priyam A., Idris N.M., Zhang Y. Gold nanoshell coated NaYF4 nanoparticlesfor simultaneously enhanced upconversion fluorescence and darkfieldimaging // J. Mater. Chem. 2012. Vol.