Автореферат (1145367), страница 6
Текст из файла (страница 6)
2016.Vol. 371. P. 1325 [Plenary lecture at International Conference on AdvancedEngineering Theory and Applications].2. Kuznetsov N. The Lyapunov dimension and its estimation via the Leonovmethod // Physics Letters A. 2016. Vol. 380, no. 2526. P.
21422149.3. Kuznetsov N., Alexeeva T., Leonov G. Invariance of Lyapunov exponentsand Lyapunov dimension for regular and irregular linearizations // NonlinearDynamics. 2016. Vol. 85. P. 195201.4. Dudkowski D., Jafari S., Kapitaniak T., Kuznetsov N.V., Leonov G.A.,Prasad A. Hidden attractors in dynamical systems // Physics Reports. 2016.Vol.
637. P. 150.5. Leonov G., Kuznetsov N., Yuldashev M., Yuldashev R. Hold-in, pull-in, andlock-in ranges of PLL circuits: rigorous mathematical denitions and limitationsof classical theory // IEEE Transactions on Circuits and SystemsI: RegularPapers. 2015. Vol. 62, no. 10. P. 24542464.6. Leonov G., Kuznetsov N. Hidden attractors in dynamical systems. From hiddenoscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hiddenchaotic attractors in Chua circuits // International Journal of Bifurcation andChaos. 2013. Vol. 23, no.
1. art. no. 1330002 (69 pages).7. Kuznetsov N., Mokaev T., Vasilyev P. Numerical justication of Leonovconjecture on Lyapunov dimension of Rossler attractor // Communicationsin Nonlinear Science and Numerical Simulation. 2014. Vol. 19. P. 10271034.8. Áðàãèí Â.Î., Âàãàéöåâ Â.È, Êóçíåöîâ Í.Â., Ëåîíîâ Ã.À., Àëãîðèòìû ïîèñêàñêðûòûõ êîëåáàíèé â íåëèíåéíûõ ñèñòåìàõ.
Ïðîáëåìû Àéçåðìàíà è Êàëìàíà è öåïè ×óà // Èçâåñòèÿ ÐÀÍ. Òåîðèÿ è Ñèñòåìû Óïðàâëåíèÿ. 2011. 4. C. 336.289. Kuznetsov N., Leonov G. Lyapunov quantities, limit cycles and strangebehavior of trajectories in two-dimensional quadratic systems // Journal ofVibroengineering. 2008. Vol. 10, no. 4. P. 460467.10. Danca M.-F., Feckan M., Kuznetsov N., Chen G. Looking more closely at theRabinovich-Fabrikant system // International Journal of Bifurcation and Chaos.2016. Vol. 26, no. 02. art. num. 1650038.11.
Leonov G., Kuznetsov N., Mokaev T. Homoclinic orbits, and self-excited andhidden attractors in a Lorenz-like system describing convective uid motion //The European Physical Journal Special Topics. 2015. Vol. 224, no. 8. P. 14211458.12. Leonov G., Kuznetsov N. Time-varying linearization and the Perron eects //International Journal of Bifurcation and Chaos.
2007. Vol. 17, no. 4. P. 10791107.13. Leonov G., Kuznetsov N., Vagaitsev V. Localization of hidden Chua'sattractors // Physics Letters A. 2011. Vol. 375, no. 23. P. 22302233.14. Leonov G., Kuznetsov N., Vagaitsev V. Hidden attractor in smooth Chuasystems // Physica D: Nonlinear Phenomena.
2012. Vol. 241, no. 18. P. 14821486.15. Ëåîíîâ Ã.À., Êóçíåöîâ Í.Â. Àëãîðèòìû ïîèñêà ñêðûòûõ êîëåáàíèé â ïðîáëåìàõ Àéçåðìàíà è Êàëìàíà // Äîêëàäû àêàäåìèè íàóê. 2011. Ò. 439, 2.Ñ. 167173.16. Ëåîíîâ Ã.À, Êóçíåöîâ Í.Â., Êóäðÿøîâà Å.Â. Öèêëû äâóìåðíûõ ñèñòåì.Êîìïüþòåðíûå âû÷èñëåíèÿ, äîêàçàòåëüñòâà, ýêñïåðèìåíòû // ÂåñòíèêÑàíêò-Ïåòåðáóðãñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà. Ñåðèÿ 1. 2008. 3.C. 2561.17. Leonov G., Alexeeva T., Kuznetsov N. Analytic exact upper bound for theLyapunov dimension of the Shimizu-Morioka system // Entropy. 2015. Vol.
17,no. 7. P. 51015116.18. Kuznetsov N., Leonov G., Vagaitsev V. Analytical-numerical method forattractor localization of generalized Chua's system // IFAC ProceedingsVolumes (IFAC-PapersOnline). 2010. Vol. 4, no. 1. P. 2933.2919. Kuznetsov N., Leonov G., Yuldashev M., Yuldashev R. Rigorous mathematicaldenitions of the hold-in and pull-in ranges for phase-locked loops // IFACPapersOnLine.
2015. Vol. 48, no. 11. P. 710713.20. Leonov G., Kuznetsov N., Yuldashev M., Yuldashev R. Nonlinear dynamicalmodel of Costas loop and an approach to the analysis of its stability in thelarge // Signal Processing. 2015. Vol. 108. P. 124135.21. Ëåîíîâ Ã.À., Êóçíåöîâ Í.Â., Þëäàøåâ Ì.Â., Þëäàøåâ Ð.Â. Õàðàêòåðèñòèêàôàçîâîãî äåòåêòîðà êëàññè÷åñêîé ñèñòåìû ôàçîâîé àâòîïîäñòðîéêè ÷àñòîòû // Äîêëàäû àêàäåìèè íàóê. 2015. Ò. 461, 2. Ñ. 151154.22. Ëåîíîâ Ã.À., Êóçíåöîâ Í.Â., Þëäàøåâ Ì.Â., Þëäàøåâ Ð.Â. Ìàòåìàòè÷åñêèå ìîäåëè ñõåìû Êîñòàñà // Äîêëàäû àêàäåìèè íàóê.
2015. Ò.464, 6.Ñ. 660664.23. Kuznetsov N., Leonov G., Seledzhi S., Yuldashev M., Yuldashev R. Elegantanalytic computation of phase detector characteristic for non-sinusoidalsignals // IFAC-PapersOnLine. 2015. Vol. 48, no. 11. P. 960963.24. Bianchi G., Kuznetsov N., Leonov G., Yuldashev M., Yuldashev R. Limitationsof PLL simulation: hidden oscillations in MATLAB and SPICE // InternationalCongress on Ultra Modern Telecommunications and Control Systems andWorkshops (ICUMT 2015). 2016. Vol. 2016-January. P.
7984.25. Best R., Kuznetsov N., Kuznetsova O., Leonov G., Yuldashev M., Yuldashev R.A short survey on nonlinear models of the classic Costas loop: rigorous derivationand limitations of the classic analysis // Proceedings of the American ControlConference. IEEE, 2015. P. 12961302. art. num. 7170912.26. Leonov G., Kuznetsov N., Mokaev T.
The Lyapunov dimension formula ofself-excited and hidden attractors in the Glukhovsky-Dolzhansky system //arXiv:1509.09161. 2015. http://arxiv.org/pdf/1509.09161v1.pdf.27. Leonov G., Kuznetsov N., Korzhemanova N., Kusakin D. Lyapunov dimensionformula of attractors in the Tigan and Yang systems // arXiv:1510.01492v1.2015.
http://arxiv.org/pdf/1510.01492v1.pdf.28. Leonov G., Kuznetsov N., Korzhemanova N., Kusakin D. Lyapunov dimensionformula for the global attractor of the Lorenz system // Communications inNonlinear Science and Numerical Simulation. 2016. Vol. 41. P. 84103.3029. Kuznetsov N., Kuznetsova O., Leonov G., Neittaanmaki P., Yuldashev M.,Yuldashev R. Limitations of the classical phase-locked loop analysis //Proceedings - IEEE International Symposium on Circuits and Systems. 2015.Vol. 2015-July.
P. 533536.Ìîíîãðàôèè30. Kuznetsov N. Stability and Oscillations of Dynamical Systems: Theory andApplications. Jyvaskyla University Printing House, 2008.31. Leonov G., Kuznetsov N. Nonlinear Mathematical Models of Phase-LockedLoops. Stability and Oscillations. Cambridge Scientic Publisher, 2014.Ñâèäåòåëüñòâà îá èíòåëëåêòóàëüíîé ñîáñòâåííîñòè32. Ïàòåíò íà èçîáðåòåíèå 2523219. Ñïîñîá äëÿ îïðåäåëåíèÿ ðàáî÷èõ ïàðàìåòðîâ ñèñòåìû öèôðîâîé ñâÿçè è óñòðîéñòâî äëÿ åãî ðåàëèçàöèè.
Êóçíåöîâ Í.Â., Ëåîíîâ Ã.À., Ñåëåäæè Ñ.Ì., Þëäàøåâ Ì.Â., Þëäàøåâ Ð.Â.33. Ïàòåíò íà ïîëåçíóþ ìîäåëü 112555. Ìîäóëÿòîð ïàðàìåòðîâ ôàçîâîãî äåòåêòîðà. Êóçíåöîâ Í.Â., Ëåîíîâ Ã.À., Ñåëåäæè Ñ.Ì., Þëäàøåâ Ì.Â., Þëäàøåâ Ð.Â.34. Ïàòåíò íà èçîáðåòåíèå 2449463. Ñïîñîá äëÿ îïðåäåëåíèÿ ðàáî÷èõ ïàðàìåòðîâ ñèñòåìû ôàçîâîé àâòîïîäñòðîéêè ÷àñòîòû ãåíåðàòîðà è óñòðîéñòâî äëÿåãî ðåàëèçàöèè. Êóçíåöîâ Í.Â., Ëåîíîâ Ã.À., Ñåëåäæè Ñ.Ì., Þëäàøåâ Ì.Â.,Þëäàøåâ Ð.Â.35. Ñâèäåòåëüñòâî î ãîñóäàðñòâåííîé ðåãèñòðàöèè ïðîãðàììû äëÿ ÝÂÌ2011613388. Ïðîãðàììà äëÿ îïðåäåëåíèÿ è ìîäåëèðîâàíèÿ îñíîâíûõ õàðàêòåðèñòèê ñèñòåì ôàçîâîé àâòîïîäñòðîéêè ÷àñòîòû.
Êóçíåöîâ Í.Â., Ëåîíîâ Ã.À., Ñåëåäæè Ñ.Ì., Þëäàøåâ Ì.Â., Þëäàøåâ Ð.Â.36. Ñâèäåòåëüñòâî î ãîñóäàðñòâåííîé ðåãèñòðàöèè ïðîãðàììû äëÿ ÝÂÌ2011616770. Ïðîãðàììà äëÿ îïðåäåëåíèÿ è ìîäåëèðîâàíèÿ îñíîâíûõõàðàêòåðèñòèê ñèñòåì Costas Loop. Êóçíåöîâ Í.Â., Ëåîíîâ Ã.À., Ñåëåäæè Ñ.Ì., Þëäàøåâ Ì.Â., Þëäàøåâ Ð.Â.3132.