Диссертация (1145359), страница 20
Текст из файла (страница 20)
При этомпроисходило поглощение спутника. После полного разрушения спутника его газ125образовывал кольцо вокруг основной галактики (см. раздел 1.1.4). Размер образующегося кольца был небольшим (примерно 6-7 кпк в диаметре), и он былизначально предопределен задаваемыми руками деталями процесса разрушения спутника.Диссипативные свойства аккрецирующего вещества оказываются решающим фактором для формирования кольца. Тестовые (невзаимодействующие)частицы (имитирующие молекулярные облака из межгалактического пространства или облака, принадлежащие спутнику) теряют энергию за динамическоготрения при взаимодействии с темным гало галактики и формируют газое кольцо, вращающееся вокруг основной галактики [183, 184].МОДЕЛИРОВАНИЕ ПОЛЯРНЫХ КОЛЕЦ И ИХ МОДЕЛЬНЫЕСВОЙСТВАНиже мы приводим результаты полного численного описанияпроцессов обдирания газа с периферии спиральной галактики и его захват другой галактикой при параболическом пролете.
Поскольку ряд наблюдений взаимодействующих галактик сравнимых масс показывает, как происходит процессформирования кольца, мы в своих численных моделях рассматривали галактики одинаковых масс. Пролет считался далеким, поэтому эффектами самогравитации мы пренебрегли.Мы не исследовали, как параметры пролета влияют на результат, а взялитолько один набор параметров, для которых промоделировали далекое столкновение S0 галактики с галактикой, сравнимой массы, но богатой газом. Такоестолкновение неизбежно приводило к образованию полярного кольца вокругS0 галактики.
Имея в виду дихотомию ГПК и зависимость свойств кольца отсвойств галактики, мы промоделировали процесс образования полярных колецдля галактик с разной структурой.МетодНаши расчеты основаны на стандартном варианте метода SPH. Дляпростоты мы принимаем длину сглаживания h (аналог размера частиц) посто-126янной и независимой от локальной плотности газа.
Сглаженные значения гидродинамических параметров оцевались на сетке с длиной ячейки, равной 2h.Предполагалось изотермическое уравнение состояния для газа P = c2 ρ, где Pи ρ — давление газа и его плотность, а c = const — изотермическая скоростьзвука. Температура бралась равной 104 K, тогда скорость звука c ≈ 9.1 км/с.В расчетах использовалось N = 10 000 частиц, которые представляли элементы непрерывной газовой среды. Частицы двигались во внешнем гравитационной поле, в уравнения движения вводилась искусственная вязкость, чтобыизбежать пересечение газовых частиц при возникновении ударных волн.
Член связкостью зависил от дивергенции поля скоростей (см. формулы (1.14) и (1.17)).В формуле (1.17) для вязкости присутствуют два слагаемых с коэффициентамиα и β , которые являются свободными параметрами. Эти параметры — аналоги коэффициентов вязкости в уравнении Навье-Стокса. Согласно работе [32],удовлетворительное описание изменений плотности на фронте ударной волныможно получить при значениях параметров α и β , равных 0.5 и 1.0, соответствеено. Именно эти значения и использовались в расчетах. Все детали нашейсхемы гидродинамических расчетов и перехода от стандартных гидродинамических уравнений к SPH-уравнениям можно найти в моей статье [1] и разделе 1.1.МодельГалактика-донорЧтобы свести к минимуму число свободных параметров, мы выбрали оченьпростую модель для галактики-донора — сферически симметричную модельПламмера (1.26) на стр.
37 с параметрами M0 — полная масса галактики и a0— масштаб распределения вещества в галактике.Для представления газовой среды использовалось N = 10 000 частиц. Онипервоначально распределялись на круговых орбитах в потенциале галактикидонора в очень тонком диске по закону плотности ∝ 1/r вплоть до внешнегорадиуса R0 . Полная масса газа принималась равной 0.2M0 . Размер газовых частиц — 300 пк, что являлось пределом пространственного разрешения модели.127Мы использовали безразмерную систему единиц, в которой G = 1, масса галактики-донора M0 = 1, внешний радиус распределения газовых частицR0 = 1. Единица массы соответствовала 1011 M , а единица растояния — 15кпк.
При таком выборе единица времени 86.6 млн. лет, а единица скорости —169.3 км/c.Аккрецирующая галактикаМы рассмотрели двухкомпонентную модель галактики, состоящую из балджа и диска. В качестве балджа мы взяли модель сферы Хернквиста (1.27) настр. 37 с параметрами Mb — полная масса модели и ab — масштаб распределения вещества.Для простоты гравитационный потенциал диска представлялся модельюМиямото–Нагаи [44]G Md2 ,py 2 + z 2 + bd + x2 + a2dΦd (x, y, z) = − r(3.1)где Md — полная масса диска, а ad и bd — масштабные параметры. В расчетахмы принимали отношение масштабных параметров равным ad /bd = 0.2.Отношение Mb /Md определяет сетку моделей от галактик с доминирующим балджем (большое значение отношения) до галактик с доминирующимдиском (маленькое значение отношения).
Мы рассмотрели 4 модели основной(аккрецирующей) галактики, выбрав следующие значения отношения Mb /Md :2.0, 1.0, 0.5, 0.2. При этом полная масса галактики была одной и той же и равноймассе галактики-донора: Mb + Md = 1 = 1011 M .Как было показано в п. Общие характеристики.. на стр.
119, главные галактики объектов с протяженными полярными кольцами по своим фотометрическим параметрам (и, возможно, по распределению массы) похожи на спиральные галактики. Согласно работе [185], эффективная поверхностная яркостьбалджей коррелирует с морфологическим типом галактики, а значит, и полная128светимость балджа следует той же корреляции. Что касается масштабных параметров, то они показывают большой разброс для всех морфологических типов.Именно поэтому мы фиксировали все масштабные параметры, варьируя толькоотношение Mb /Md .
Масштабы распределения вещества в балдже ab и диске bdвыбирались равными 1 кпк и 5 кпк, соответственно. Для этих значений радиус“половинной” массы составляет (1 +√2)ab ' 2.4 кпк, а радиус, на который√приходится максимум кривой вращения диска — 2(bd + ad ) ' 8.4 кпк.ОрбитаПрежде, чем моделировать формирование газового кольца при пролетедвух галактик, мы решили решили задачу двух тел для галактики-донора иаккрецирующей галактики, чтобы определить орбиту.
Процедура определенияорбиты похожа на ту, что использовалась в работе [39].Обе взаимодействующие галактики первоначально помещались на достаточно большое расстояние друг от друга (rini = 5 = 75 кпк) так, чтобы можнобыло пренебречь приливными эффектами. Начальные скорости брались соответствующими параболическому пролету двух точечных масс, равных массамгалактик. Основной плоскостью считалась плоскость газового диска галактикидонора — xy . Она же совпадала с плоскостью орбиты.
Галактика-донор пролетала по прямой орбите (вектор углового момента галактики был параллеленвектору орбитального вращения), проходя основную галактики на минимальном расстоянии от ее центра, первоначально установленного как rper = 1.6. Полярная ось основной галактики (перпендикулярная плоскости звездного диска),была параллельна оси x. Расчетная орбита несколько отличалась от параболической (так как потенциалы галактик были неточечными), но ее форма былапрактически одинаковой для всех моделей основной галактики.РезультатыВо время столкновения основная галактика обдирает веществос периферии галактики-донора, в результате чего вокруг нее образуется газо-129вое кольцо, вращающееся в ту же сторону, что и галактики по орбите.
Таккак ось вращения S0 галактики (основной галактики) была изначально перпендикулярна вектору орбитального вращения, то кольцо образуется в полярнойплоскости.. Доля захваченного газа составляет около 10% от всего газа донорской галактики (или около 2 × 109 M ), при этом мы не обнаружили никакогосущественного различия в массе захваченного газа для всех рассматриваемыхмоделей основной галактики. Некоторое количество газа попало в центральныеобласти галактики. Его масса составила 2 × 108 M внутри области радиусом1 кпк от центра.
Время формирования кольца — несколько сотен миллионовлет. Оно меньше для колец, образующих вокруг галактик с массивным балджем, и доходит до 9 × 108 лет для моделей, в которых доминирует диск. Кэтому времени взаимодействующие галактики успевают разойтись на довольно большое расстояние (более 120 кпк), так что никаких прямых свидетельстввзаимодействия между ними не наблюдается, а галактика с кольцом выглядиткак изолированный объект.Наше моделирование выявило важную особенность процесса формирования кольца в различных потенциалах основной галактики. Размеры стационарного кольца оказываются различными при разном отношении Mb /Md , несмотря на одинаковую полную массу моделей.На рис. 3.2 показан заключительный этап формирования полярного кольца для четырех рассмотренных моделей.
Кольцо лежит в орбитальной плоскости. Бросается в глаза резкая разница в размере кольца, который увеличивается, когда масса балджа уменьшается, и варьируется от примерно 7 кпк вдиаметре галактик с доминирующим балджем (см. таблицу 3.1) до примерно13 кпк для дисковых галактик.Радиус кольца определяется в конечном итоге угловым моментом газовыхчастиц из галактики-донора относительно аккрецирующей галактики в моментпрохождения перицентра. Так как прицельные параметры были практическиодинаковыми во всех экспериментах, полный угловой момент частиц, образу-130Рис.
3.2. Вид полярного кольца на момент времениt = 10после прохождения перицентрадля четырех экспериментов. В верхнем правом углу — отношение массы балджа к масседиска. Размер каждого изображения 30 кпк×30 кпк.ющих кольцо, почти одинаков для всех моделей. Но из рис.