Диссертация (1143799), страница 16
Текст из файла (страница 16)
Chemical and Physical Properties of Polyimides: Biomedicaland Engineering Applications // High Perform. Polym. - Polyimides Based From Chem. to Appl. 2012.35.S. Metz et al. Polyimide and SU-8 microfluidic devices manufactured by heatdepolymerizable sacrificial material technique // Lab Chip. 2004. Vol. 4, №114–120. P. 114–120.36.Tawfik H.H. et al. Hard-baked photoresist as a sacrificial layer for sub-180 °Csurface micromachining processes // Micromachines. 2018.
Vol. 9, № 5. P. 1–8.37.Ur H. Plasma Based Dry Release of MEMS Devices // MicroelectromechanicalSyst. Devices. 2012.38.Pacco A. et al. Drying of High Aspect Ratio Structures: A Comparison ofDrying Techniques via Electrical Stiction Analysis // Solid State Phenom. 2009.Vol. 145–146. P. 87–90.12439.McDougall J.A. Rising with mary: Re-visioning a feminist theology of the crossand resurrection // Theol.
Today. 2012. Vol. 69, № 2. P. 166–176.40.Моро У. Микролитография: Принципы, методы, материалы. В двухчастях. Часть 1. / ed. Тимерова Р.Х. Москва: Издательство «Мир».Редакция литературы по электронике, 1990. 605 p.41.Pham N.P. et al. Direct spray coating of photoresist – a new method forpatterning 3-D structures Laboratory of Electronic Components , Technologyand Materials MP29 MP29. 2002. P. 182–185.42.Pham N., Boellard E. Spin, Spray coating and Electrodeposition of photoresistfor MEMS structures–A comparison. 2002. P.
81–86.43.White L.K. Planarization properties of resist and polyimide coatings // J.Electrochem. Soc.Solid-state Sci. Technol. 1983. Vol. 7. P. 1543–1548.44.Shimizu S. Chemical Mechanisms in Photoresist Systems part II // J.Electrochem. Soc.Solid-state Sci. Technol. 1978. Vol. 125, № 7. P. 1126–1130.45.Shaw J.M.
Developer Temperature Effects on E-Beam and Optically ExposedPositive Photoresist // J. Electrochem. Soc. 1979. Vol. 126, № 11. P. 2026.46.Vusirikala S. CFD simulation of contact planarization. 2007.47.Zant P. Van. No TitleMicrochip Fabrication: A Practical Guide toSemiconductor Processing.
McGraw-Hill Education; 6 edition (January 7,2014), 2014. 576 p.48.Prybyla J.. No Title Device Fabrication Involving Surface Planarization: pat.6,048,799 USA. 2000.49.Schmid G.M. et al. Mesoscale Monte Carlo Simulation of PhotoresistProcessing // J. Electrochem. Soc. 2004. Vol. 151, № 2. P. G155.50.Lafayette W., March R. and Experimental Characterization // Macromolecules.1994.
P. 5626–5638.51.Tsiartas P.C. et al. The mechanism of phenolic polymer dissolution: A newperspective // Macromolecules. 1997. Vol. 30, № 16. P. 4656–4664.52.Flanagin L.W., Singh V.K., Willson C.G. Surface roughness development125during photoresist dissolution // J. Vac. Sci. Technol. B Microelectron. Nanom.Struct. 1999. Vol. 17, № 4. P. 1371.53.W. Hinsberg, J. Hoffnagle and F.H. Chemistry and physics of the PEB processin a CA resist // Solid State Technol. 2000.
Vol. 43. P. 95–102.54.Breitbarth F., Ducke E., Tiller H.I. EPR Investigation of Plasma-ChemicalResist Etching in O2 and O2/CF4 Discharges // Plasma Chem. Plasma Process.1990. Vol. 10, № 3. P. 377–399.55.А.М. Кутепов, А.Г. Захаров А.И.М. Вакуумно-плазменное и плазменнорастворное модифицирование полимерных материалов / ed. Цивадзе А.Ю.Москва: Наука, 2004. 496 p.56.Frank D. Egitto.
Plasma etching and modification of organic polymers // PureAppl. Chem. 1990. Vol. 62, № 9. P. 1699–1708.57.Lee Y. et al. Surface characterization of polymers modified by keV and MeVion beams // J. Adhes. Sci. Technol. 2001. Vol. 15, № 9. P. 1079–1089.58.Wilkinson C.D.W., Rahman M. Dry etching and sputtering // Philos. Trans. R.Soc. A Math. Phys.
Eng. Sci. 2004. Vol. 362, № 1814. P. 125–138.59.Riekerink Olde M.B. Structural and Chemical Modification of PolymerSurfaces By Gas Plasma Etching. 2001. P. 5–26.60.Kim S. et al. Remote RF oxygen plasma cleaning of the photoresist residue andRIE-related fluorocarbon films // J.
Korean …. 2002. Vol. 41, № 2. P. 247–250.61.Tsou L.Y. Effect of Photoresist on Plasma Etching // J. Electrochem. Soc. 1989.Vol. 136, № 8. P. 2354.62.Bray R.P., Rhinehart R.R. A simplified model for the etch rate of novolac-basedphotoresist // Plasma Chem. Plasma Process. 2001. Vol. 21, № 1. P. 149–161.63.Гомжин И.В., Лебедев Э.А. Ф.Н.Н. ПЛАЗМЕННОЕ УДАЛЕНИЕФОТОРЕЗИСТА В ПОТОКЕ АКТИВИРОВАННОГО ГАЗА.64.K. Taniguchi, K. Tanaka T.I.
and M.K. Photoresist ashing by atmospericpressure glow plasma // J. Photopolym. Sci. Technol. 1997. Vol. 10, № 1. P.113–118.12665.Yi C. heon et al. Characteristic of a dielectric barrier discharges using capillarydielectric and its application to photoresist etching // Surf. Coatings Technol.2003. Vol. 163–164. P. 723–727.66.Cook J.M., Benson B.W.
Application of EPR spectroscopy to oxidativeremoval of organic materials // J. Electrochem. Soc. 1983. Vol. 130, № 12. P.2459–2464.67.Novotny Z. THE COMPARISON OF REACTIVE ION ETCHING ANDPLASMA ETCHING IN A PARALLEL-PLATE REACTOR // Czech. J. Phys.1988. Vol. 116, № B 38. P. 338–342.68.Milo D. Koretsky and Jeffrey A. Reimer. A simple model for the etching ofphotoresist with plasma-generated reactants // J.
Appl. Phys. 1992. Vol. 72, №11. P. 5081–5088.69.Tanaka K., Inomata T., Kogoma M. Ashing of organic compounds with spraytype plasma reactor at atmospheric pressure // Plasmas Polym. 1999. Vol. 4, №4. P. 269–281.70.H. W. KIM et al. Application of N2/Ar inductively coupled plasma to thephotoresist ashing for low-k dielectrics // J. Mater. Sci. 2005. Vol. 40. P.
3543–3544.71.Gong Y., Xu J., Buchanan R.C. Surface roughness: A review of itsmeasurement at micro-/nano-scale // Phys. Sci. Rev. 2018. Vol. 3, № 1. P. 1–10.72.Kramida, A., Ralchenko, Yu., Reader, J. and N.A.T. NIST Atomic SpectraDatabase (ver. 5.6.1). [Electronic resource] // National Institute of Standardsand Technology, Gaithersburg, MD. 2018.73.Pavel Hedbávný P.Š. •ovíèek.
Study of argon/oxygen plasma used for creationof aluminium oxide thin films. 1999. Vol. 9, № Sociedad Mexicana de Cienciade Superficies y de Vacío. P. 131–134.74.Trennepohl W. et al. Modelling of an Ar-O2 reactive magnetron discharge usedfor deposition of chromium oxide // Plasma Sources Sci. Technol.
1996. Vol. 5,127№ 4. P. 607–621.75.J. Musil, J Matous A.R. Optical emission spectra from microwave oxygenplasma prodused by surfatron discharge // Czech. J. Phys. 1993. Vol. 43, № 5.P. 533–540.76.Schlitz A., Abraham P., Dechenaux E. Improvement of PhotoresistPlanarization Properties by Thermal Cure // J.
Electrochem. Soc. 1987. Vol.134, № 1. P. 190–194.77.Mishin M. V. et al. Spatial distribution of the electrical potential and ionconcentration in the downstream area of atmospheric pressure remote plasma //AIP Adv. 2014. Vol. 4, № 10. P. 0–14.78.ОчкинВ.Н.Спектроскопиянизкотемпературнойплазмы.Москва:Физматлит, 2006.
472 p.79.N F.R. The role of the O 2 (a 1 Delta g) metastable in oxygen discharges // J.Phys. D. Appl. Phys. 2002. Vol. 35, № 10. P. 1094.80.Pérès I., Kushner M.J. Spatial distributions of power and ion densities in RFexcited remote plasma reactors // Plasma Sources Sci. Technol. 1996. Vol. 5, №3. P. 499–509.81.Gudmundsson J.T. et al. A reply to a comment on: `On the plasma parametersof a planar inductive oxygen discharge // J. Phys. D.
Appl. Phys. 2000. Vol. 33,№ 22. P. 3010.82.Lee S.H., Iza F., Lee J.K. Particle-in-cell Monte Carlo and fluid simulations ofargon-oxygen plasma: Comparisons with experiments and validations // Phys.Plasmas. 2006. Vol. 13, № 5. P. 1–9.83.Winkler R., Wilhelm J. Modelling of low pressure reactive RF plasmas // Phys.Scr. 1988. Vol. 23. P. 264–270.84.Seo D.C., Chung T.H. Observation of the transition of operating regions in alow-pressure inductively coupled oxygen plasma by Langmuir probemeasurement and optical emission spectroscopy // J.
Phys. D. Appl. Phys. 2001.Vol. 34, № 18. P. 2854–2861.128ПРИЛОЖЕНИЕ 1ОПРЕДЕЛЕНИЕ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ МЭМС –ПЕРЕКЛЮЧАТЕЛЯЭлектрофизическиесрабатыванияипараметрысопротивлениеМЭМС-переключателямембрана–(напряжениеразрывнойэлектрод)экспериментальных образцов проводили с помощью измерительного стенданизкочастотной метрики (рис. П.2.1).
Пластина с кристаллами МЭМСпереключателейустанавливалась камеру измерений(1) на столик, кконтактным площадкам переключателя через зонды проводилось подключениек измерительным приборам. После подключения зондов к контактнымплощадкам измерительная камера заполнялась сухим азотом. При подаченапряжения (2) на электроды смещения и мембрану различной полярностимембрана под действием кулоновских сил взаимодействия притягивалась кцентральномупроводнику,обеспечиваяпротеканиетока,которыйрегистрировался на экране осциллографа (3) (графический метод контроля) иизмерителя (4) Е7-12 (цифровой метод контроля).















