Диссертация (1137372), страница 3
Текст из файла (страница 3)
(2). 1999.Vol. 150, no. 3. P. 1177–1179.15. Verbitsky M. Hypercomplex manifolds with trivial canonical bundle and theirholonomy // Moscow Seminar on Mathematical Physics. II. Providence,RI: Amer. Math. Soc., 2007. Vol. 221 of Amer. Math. Soc. Transl. Ser. 2.P. 203–211.16. Verbitsky M. HyperKähler manifolds with torsion, supersymmetry and Hodgetheory // Asian J.
Math. 2002. Vol. 6, no. 4. P. 679–712.17. Howe P. S., Papadopoulos G. Twistor spaces for hyper-Kähler manifolds withtorsion // Phys. Lett. B. 1996. Vol. 379, no. 1-4. P. 80–86.18. Grantcharov G., Poon Y. S. Geometry of hyper-Kähler connections with torsion // Comm. Math. Phys. 2000. Vol. 213, no. 1. P. 19–37.19. Fino A., Grantcharov G. Properties of manifolds with skew-symmetric torsionand special holonomy // Adv. Math.
2004. Vol. 189, no. 2. P. 439–450.20. Banos B., Swann A. Potentials for hyper-Kähler metrics with torsion // Classical Quantum Gravity. 2004. Vol. 21, no. 13. P. 3127–3135.21. Verbitsky M. Subvarieties in non-compact hyperKähler manifolds // Math.Res. Lett. 2004. Vol. 11, no. 4. P. 413–418.22. Sommese A. J. Quaternionic manifolds // Math. Ann.
1974/75. Vol. 212.P. 191–214.23. Grantcharov G., Verbitsky M. Calibrations in hyper-Kähler geometry // Commun. Contemp. Math. 2013. Vol. 15, no. 2. P. 1250060, 27.10.