Диссертация (1137342)
Текст из файла
National Research University Higher School of EconomicsFaculty of MathematicsPavlo GavrylenkoIsomonodromic deformations and quantum field theoryPhD thesisSupervisorAndrei MarshakovDr.Sc., professorMoscow – 2018Contents1 Introduction1.1 Basic concepts . . .
. . . . . . . . . . . . . .1.1.1 Conformal field theory . . . . . . . .1.1.2 Isomonodromic deformations . . . . .1.1.3 Isomonodromy-CFT correspondence .1.1.4 Twist fields . . . . . . . . . . . . . .1.2 Outline . . . . . . . . . . . . . . . . . . . . .1.2.1 List of the key results . . . .
. . . . .1.2.2 Organization of the thesis . . . . . .........................................................................................................2 Isomonodromic τ -functions and WN conformal blocks2.1 Introduction . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . .2.2 Isomonodromic deformations and moduli spaces of flat connections2.2.1 Schlesinger system . . . . . . . . . . . . . . . . . . . . . . .2.2.2 Moduli spaces of flat connections . . . . . . . . . . . . . . .2.2.3 Pants decomposition of Mg4 . . . . . .
. . . . . . . . . . . .2.2.4 Pants decomposition for Mgn . . . . . . . . . . . . . . . . . .2.3 Iterative solution of the Schlesinger system . . . . . . . . . . . . . .2.3.1 sl2 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3.2 sl3 case . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .2.4 Remarks on W3 conformal blocks . . . . . . . . . . . . . . . . . . .2.4.1 General conformal block . . . . . . . . . . . . . . . . . . . .2.4.2 Degenerate field . . . . . . . . . . . . . . . . . . . . . . . . .2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Free fermions, W-algebras and isomonodromic deformations3.1 Introduction . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .3.2 Abelian U (1) theory . . . . . . . . . . . . . . . . . . . . . . . .3.2.1 Fermions and vertex operators . . . . . . . . . . . . . . .3.2.2 Matrix elements and Nekrasov functions . . . . .
. . . .3.2.3 Riemann-Hilbert problem . . . . . . . . . . . . . . . . .3.2.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3 Non-Abelian U (N ) theory . . . . . . . . . . . . . . . . . . . . .3.3.1 Nekrasov functions . . . . . . . . . . . . . . . . . . . . .3.3.2 N -component free fermions . . . . . . . .
. . . . . . . .3.3.3 Level one Kac-Moody and W-algebras . . . . . . . . . .3.3.4 Free fermions and representations of W-algebras . . . . .3.4 Vertex operators and Riemann-Hilbert problem . . . . . . . . .3.4.1 Vertex operators and monodromies . . . . . . . . . . . .3.4.2 Generalized Hirota relations . . . . . . . . . . . .
. . . .3.4.3 Riemann-Hilbert problem: hypergeometric example . . .3.5 Isomonodromic tau-functions and Fredholm determinants . . .3.5.1 Isomonodromic tau-function . . . . . . . . . . . . . . . .3.5.2 Fredholm determinant . . . . . . .
. . . . . . . . . . . .iii............................................111789111113.............1515171819202122262831313234..................37373838414344454546475052525658606061CONTENTS3.6Conclusion . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .624 Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions654.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .654.1.1 Motivation and some results . . . . . . . . . . . . . . . . . . .654.1.2 Notation . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .704.1.3 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . .704.1.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . .714.2 Tau functions as Fredholm determinants . . . . . . . . . . . . . . . .744.2.1 Riemann-Hilbert setup . . .
. . . . . . . . . . . . . . . . . . .744.2.2 Auxiliary 3-point RHPs . . . . . . . . . . . . . . . . . . . . .774.2.3 Plemelj operators . . . . . . . . . . . . . . . . . . . . . . . . .794.2.4 Tau function . . . . . . . . . . . . . . . . . . .
. . . . . . . . .844.2.5 Example: 4-point tau function . . . . . . . . . . . . . . . . . .874.3 Fourier basis and combinatorics . . . . . . . . . . . . . . . . . . . . .914.3.1 Structure of matrix elements . . . . . . . . . . . . . . . . . . .914.3.2 Combinatorics of determinant expansion . . . . .
. . . . . . .944.4 Rank two case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .984.4.1 Gauss and Cauchy in rank 2 . . . . . . . . . . . . . . . . . . .994.4.2 Hypergeometric kernel . . . . . . . . . . . . . . . . . . . . . . 1064.5 Relation to Nekrasov functions . . . .
. . . . . . . . . . . . . . . . . 1105 Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations1215.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215.2 Twist fields and branched covers . . . . . . . . . . . . . . . . . . . . 1235.2.1 Definition . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 1235.2.2 Correlators with the current . . . . . . . . . . . . . . . . . . . 1265.2.3 Stress-tensor and projective connection . . . . . . . . . . . . . 1285.3 W-charges for the twist fields . . . . . . . . . . . . . . . . . . . . . . 1295.3.1 Conformal dimensions for quasi-permutation operators . . . .
1295.3.2 Quasipermutation matrices . . . . . . . . . . . . . . . . . . . . 1305.3.3 W3 current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315.3.4 Higher W-currents . . . . . . . . . . . . . . . . . . . . . . . . 1325.4 Conformal blocks and τ -functions .
. . . . . . . . . . . . . . . . . . . 1345.4.1 Seiberg-Witten integrable system . . . . . . . . . . . . . . . . 1345.4.2 Quadratic form of r-charges . . . . . . . . . . . . . . . . . . . 1355.4.3 Bergman τ -function . . . . . . . . . . . . . . . . . . . . . . . . 1385.5 Isomonodromic τ -function . . . . . . . . .
. . . . . . . . . . . . . . . 1405.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1455.8 Diagram technique . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 1455.9 W4 (z) and the primary field . . . . . . . . . . . . . . . . . . . . . . . 1475.10 Degenerate period matrix . . . . . . . . . . . . . . . . . . . . . . . . 148ivCONTENTS6 Twist-field representations of W-algebras, exact conformal blocksand character identities1516.1 Abstract .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516.3 W-algebras and KM algebras at level one . . . . . . . . . . . . . . . 1536.3.1 Boson-fermion construction for GL(N) . . . . . . . . . . . . . 1536.3.2 Real fermions for D- and B- series . . . . . . . . . . . . . . . 1556.4 Twist-field representations from twisted fermions . . . . . .
. . . . . 1576.4.1 Fermions and W-algebras . . . . . . . . . . . . . . . . . . . . 1576.4.2 Twist fields and Cartan’s normalizers . . . . . . . . . . . . . . 1586.4.3 Twist fields and bosonization for gl(N ) . . . . . . . . . . . . . 1616.4.4 Twist fields and bosonization for so(n) . . . . . . . . . .
. . . 1636.5 Characters for the twisted modules . . . . . . . . . . . . . . . . . . . 1646.5.1 gl(N ) twist fields . . . . . . . . . . . . . . . . . . . . . . . . . 1656.5.2 so(2N ) twist fields, K 0 = 0 . . . . . . . . . . . . . . . . . . . . 1666.5.3 so(2N ) twist fields, K 0 > 0 . . . . . . . . . . . . . . . . . .
. . 1666.5.4 so(2N + 1) twist fields . . . . . . . . . . . . . . . . . . . . . . 1676.5.5 Character identities . . . . . . . . . . . . . . . . . . . . . . . 1686.5.6 Twist representations and modules of W-algebras . . . . . . . 1716.6 Characters from lattice algebras constructions . . . . . . . . . . . .
. 1736.6.1 Twisted representation of bg1 . . . . . . . . . . . . . . . . . . . 1736.6.2 Calculation of characters . . . . . . . . . . . . . . . . . . . . . 1756.6.3 Characters from principal specialization of the Weyl-Kac formula1776.7 Exact conformal blocks of W (so(2N )) twist fields . . . . . . . . .
. . 1826.7.1 Global construction . . . . . . . . . . . . . . . . . . . . . . . . 1826.7.2 Curve with holomorphic involution . . . . . . . . . . . . . . . 1846.7.3 Computation of conformal block . . . . . . . . . . . . . . . . . 1866.7.4 Relation between W (so(2N )) and W (gl(N )) blocks . . . . . . 1886.8 Conclusion . . . . . . . . .
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.