Диссертация (1137259), страница 24
Текст из файла (страница 24)
1. — Pp. 77–87.91. Nijssen S., Kok J. Faster association rules for multiple relations //Int. Jt. Conf. Artif. Intell. Vol. 17. — Citeseer. 2001. —Pp. 891–896.92. Norris E. M. An algorithm for computing the maximal rectangles in a binary relation // Rev. Roum. Math{é}matiques PuresAppliqu{é}es. — 1978. — Vol.
23, no. 2. — Pp. 243–250.93. Orlando S., Perego R., Silvestri C. A new algorithm for gap constrained sequence mining // Proc. 2004 ACM Symp. Appl. Comput. — ACM. 2004. — Pp. 540–547.14894. Papadopoulos A. N., Lyritsis A., Manolopoulos Y. SkyGraph: analgorithm for important subgraph discovery in relational graphs //Data Min. Knowl.
Discov. — 2008. — July. — Vol. 17, no. 1. —Pp. 57–76.96. Pei J., Han J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U.,Hsu M.-C. PrefixSpan Mining Sequential Patterns Efficiently byPrefix Projected Pattern Growth // 17th Int. Conf. Data Eng. —2001. — Pp. 215–226.95. Pei J., Han J., Wang W. Constraint-based sequential pattern mining: the pattern-growth methods // J. Intell. Inf.
Syst. — 2007. —Vol. 28, no. 2. — Pp. 133–160.98. Pennerath F., Niel G., Vismara P., Jauffret P., Laurenço C., NapoliA. Graph-Mining Algorithm for the Evaluation of Bond Formability // J. Chem. Inf. Model. — 2010. — Vol. 50, no. 2. —Pp. 221–239.97. Pennerath F., Polaillon G., Napoli A.
Mining Intervals of Graphsto Extract Characteristic Reaction Patterns.100. Plantevit M., Choong Y. W., Laurent A., Laurent D., Teisseire M.M2SP: Mining Sequential Patterns Among Several Dimensions //Knowl. Discov. Databases PKDD 2005. Vol. 3721 / ed. by A. M.Jorge, L. Torgo, P. Brazdil, R. Camacho, J. Gama. — Berlin,Heidelberg : Springer Berlin Heidelberg, 2005. — Pp. 205–216.
—(Lecture Notes in Computer Science).99. Plantevit M., Laurent A., Laurent D., Teisseire M., Choong Y. W.Mining multidimensional and multilevel sequential patterns //ACM Trans. Knowl. Discov. Data. — 2010. — Jan. — Vol.4, no. 1. — Pp. 1–37.101. Poezevara G., Cuissart B., Crémilleux B. Extracting and summarizing the frequent emerging graph patterns from a dataset ofgraphs // J. Intell. Inf. Syst. — 2011. — July. — Vol. 37.
—Pp. 333–353.149102. Priss U. FcaStone - FCA file format conversion and interoperability software // Proc. Concept. Struct. Tool InteroperabilityWork. — 2008.103. Roth C., Obiedkov S., Kourie D. G. On succinct representation ofknowledge community taxonomies with formal concept analysis //Int. J. Found. Comput. Sci. — 2008. — Apr. — Vol. 19, no. 02. —Pp. 383–404.104. Scheer A.-W. Business Process Engineering–Reference Models forIndustrial Companies // Berlin al.
Springer, — 1994.105. Schietgat L., Ramon J., Bruynooghe M., Blockeel H. An Efficiently Computable Graph-Based Metric for the Classification ofSmall Molecules // Discov. Sci. SE - 20. Vol. 5255 / ed. byJ.-F. Boulicaut, M. Berthold, T. Horváth. — Springer Berlin Heidelberg, 2008. — Pp. 197–209.
— (Lecture Notes in ComputerScience).106. Seeland M., Girschick T., Buchwald F., Kramer S. Online Structural Graph Clustering Using Frequent Subgraph Mining // Mach.Learn. Knowl. Discov. Databases SE - 14. Vol. 6323 / ed. by J.Balcázar, F.
Bonchi, A. Gionis, M. Sebag. — Berlin, Heidelberg :Springer Berlin Heidelberg, 2010. — Pp. 213–228. — (LectureNotes in Computer Science).107. Shelokar P., Quirin A., Cordón O., Cordón Ó. MOSubdue: aPareto dominance-based multiobjective Subdue algorithm for frequent subgraph mining // Knowl.
Inf. Syst. — 2013. — Nov. —Vol. 34, no. 1. — Pp. 75–108.108. Soulet A., Raı̈ssi C., Plantevit M., Cremilleux B. Mining DominantPatterns in the Sky // 2011 IEEE 11th Int. Conf. Data Min. —Vancouver, B.C, Canada : IEEE, Dec. 2011. — Pp. 655–664.109. Srikant R., Agrawal R.
Mining sequential patterns: Generalizations and performance improvements. — Springer, 1996.150110. Sun X., Orlowska M. E., Zhou X. Finding event-oriented patternsin long temporal sequences // Adv. Knowl. Discov. Data Min. —Springer, 2003.
— Pp. 15–26.111. Ter Hofstede A. H. M., Aalst W. M. P. van der, Adams M., RussellN. Modern Business Process Automation: YAWL and its supportenvironment. — Springer, 2009.112. Thomas L. T., Valluri S. R., Karlapalem K. MARGIN: Maximalfrequent subgraph mining // ACM Trans. Knowl. Discov. Data. —2010.
— Oct. — Vol. 4, no. 3. — Pp. 1–42.113. Toivonen H. [et al.] Discovery of frequent patterns in large datacollections. — Citeseer, 1996.114. Tsumoto S., Iwata H., Hirano S., Tsumoto Y. Similarity-based behavior and process mining of medical practices // Futur. Gener.Comput.
Syst. — 2014. — Apr. — Vol. 33. — Pp. 21–31.115. Valtchev P., Grossser D., Roume C., Hacene M. R. 5. GALICIA: an open platform for lattices // Contrib. to 11th Intl. Conf.Concept. Struct. — 2003. — Pp. 241–254.116. Webb G. I. Discovering Significant Patterns // Mach.
Learn. —2007. — Vol. 68, no. 1. — Pp. 1–33.117. Webb G. I. Self-sufficient itemsets // ACM Trans. Knowl. Discov.Data. — 2010. — Jan. — Vol. 4, no. 1. — Pp. 1–20.118. Webb G. I., Zhang S. K-Optimal Rule Discovery // Data Min.Knowl. Discov. — 2005. — Vol. 10, no. 1. — Pp. 39–79.119. Weijters A., Ribeiro J. T. S. Flexible heuristics miner (FHM) //Comput. Intell. Data Min.
(CIDM), 2011 IEEE Symp. — IEEE.2011. — Pp. 310–317.120. Weijters A. J. M. M., Aalst W. M. P. van der Rediscovering workflow models from event-based data using little thumb // Integr.Comput. Aided. Eng. — 2003. — Vol. 10, no. 2. — Pp. 151–162.151122. Wen L., Aalst W. M. P. van der, Wang J., Sun J. Mining process models with non-free-choice constructs // Data Min. Knowl.Discov. — 2007. — Vol. 15, no. 2. — Pp. 145–180.121. Wen L., Wang J., Aalst W.
M. P. van der, Huang B., Sun J. A novelapproach for process mining based on event types // J. Intell. Inf.Syst. — 2009. — Vol. 32, no. 2. — Pp. 163–190.123. Werf J. M. E. M. van der, Dongen B. F. van, Hurkens C. A. J.,Serebrenik A. Process discovery using integer linear programming // Appl. Theory Petri Nets. — Springer, 2008. — Pp.
368–387.124. White S. A. Introduction to BPMN // IBM Coop. — 2004. —Vol. 2. —.125. Wörlein M., Meinl T., Fischer I., Philippsen M. A QuantitativeComparison of the Subgraph Miners MoFa, gSpan, FFSM, andGaston // Knowl. Discov. Databases PKDD 2005 SE - 39. Vol.3721 / ed. by A. Jorge, L. Torgo, P. Brazdil, R. Camacho, J.Gama. — Springer Berlin Heidelberg, 2005. — Pp. 392–403.
—(Lecture Notes in Computer Science).126. Xing Z., Pei J., Keogh E. A brief survey on sequence classification // ACM SIGKDD Explor. Newsl. — 2010. — Nov. — Vol. 12,no. 1. — P. 40.130. Yan X., Cheng H., Han J., Yu P. S. Mining significant graphpatterns by leap search // Proc. 2008 ACM SIGMOD Int. Conf.Manag. data - SIGMOD ’08. — New York, New York, USA :ACM Press, June 2008. — Pp. 433–444.127. Yan X., Han J. CloseGraph: mining closed frequent graph patterns // Proc. ninth ACM SIGKDD Int.
Conf. Knowl. Discov.data Min. — New York, NY, USA : ACM, 2003. — Pp. 286–295. — (KDD ’03).152128. Yan X., Han J. gSpan: Graph-Based Substructure Pattern Mining //Data Mining, 2002. ICDM 2003. Proceedings. . . . — Dec.2002. — P. 721.129. Yan X., Han J., Afshar R. CloSpan: Mining Closed SequentialPatterns in Large Databases // Proc. SIAM Int’l Conf.
DataMin. — 2003. — Pp. 166–177.131. Yevtushenko S. A. System of data analysis “Concept Explorer” //Proc. 7th Natl. Conf. Artif. Intell. KII-2000. — Russia, 2000. —Pp. 127–134.132. Zaki M., Hsiao C.-J. Efficient algorithms for mining closed itemsets and their lattice structure // IEEE Trans. Knowl. Data Eng. —2005.
— Apr. — Vol. 17, no. 4. — Pp. 462–478.133. Zaki M. J. Efficient enumeration of frequent sequences // Proc.seventh Int. Conf. Inf. Knowl. Manag. — ACM. 1998. —Pp. 68–75.134. Zaki M. J. Sequence mining in categorical domains: incorporatingconstraints // Proc. ninth Int.
Conf. Inf. Knowl. Manag. — ACM.2000. — Pp. 422–429.135. Zaki M. SPADE: An Efficient Algorithm for Mining FrequentSequences // Mach. Learn. — 2001. — Vol. 42, 1-2. — Pp. 31–60.137. Zeng Z., Wang J., Zhang J., Zhou L. FOGGER : An Algorithmfor Graph Generator Discovery // Proc. 12th Int. Conf. ExtendingDatabase Technol. Adv. Database Technol. - EDBT ’09. — NewYork, New York, USA : ACM Press, Mar.