Диссертация (1137259), страница 23
Текст из файла (страница 23)
Fu T.-c. A review on time series data mining // Eng. Appl. Artif.Intell. — 2011. — Feb. — Vol. 24, no. 1. — Pp. 164–181.39. Ganter B. Two basic algorithms in concept analysis. Vol. 5986 /ed. by L. Kwuida, B. Sertkaya. — Springer, 2010. — Pp. 312–340. — (Lecture Notes in Computer Science).42. Ganter B., Grigoriev P. A., Kuznetsov S. O., Samokhin M. V.Concept-Based Data Mining with Scaled Labeled Graphs // Concept. Struct. Work SE - 6. Vol.
3127 / ed. by K. Wolff, H.Pfeiffer, H. Delugach. — Springer Berlin Heidelberg, 2004. —Pp. 94–108. — (Lecture Notes in Computer Science).40. Ganter B., Kuznetsov S. Pattern Structures and Their Projections //Concept. Struct. Broadening Base. Vol. 2120 / ed. by H. Delugach, G.
Stumme. — Springer Berlin Heidelberg, 2001. —Pp. 129–142. — (Lecture Notes in Computer Science).41. Ganter B., Wille R. Formal Concept Analysis: MathematicalFoundations. — 1st. — Springer, 1999. — Pp. I–X, 1–284.14243. Garofalakis M. N., Rastogi R., Shim K. SPIRIT: Sequential patternmining with regular expression constraints // VLDB. Vol. 99. —1999. — Pp. 7–10.46. Han J., Cheng H., Xin D., Yan X. Frequent pattern mining: currentstatus and future directions // Data Min.
Knowl. Discov. —2007. — Jan. — Vol. 15, no. 1. — Pp. 55–86.44. Han J., Pei J. Mining frequent patterns by pattern-growth:methodology and implications // ACM SIGKDD Explor.Newsl. — 2000. — Vol. 2, no. 2. — Pp. 14–20.45. Han J., Pei J., Mortazavi-Asl B., Chen Q., Dayal U., Hsu M.FreeSpan: frequent pattern-projected sequential pattern mining //Proc. 6th ACM SIGKDD Int’l Conf. Knowl. Discov.
data Min. —2000. — Pp. 355–359.49. Hasan M. A., Chaoji V., Salem S., Besson J., Zaki M. J.ORIGAMI: Mining Representative Orthogonal Graph Patterns //Seventh IEEE Int. Conf. Data Min. (ICDM 2007). — IEEE, Oct.2007. — Pp. 153–162.47. Hasan M. A., Zaki M. J. Output space sampling for graph patterns // Proc. VLDB Endow. — 2009. — Aug. — Vol. 2, no.
1. —Pp. 730–741.48. Hasan M. A., Zaki M. J. MUSK: Uniform Sampling of k MaximalPatterns // Proc. SDM. — 2009. — Pp. 650–661.50. Huan J., Wang W., Prins J. Efficient mining of frequent subgraphsin the presence of isomorphism // Proc. 3rd IEEE Int. Conf. DataMining, 2003. ICDM 2003. — 2003. — Pp. 549–552.51. Huan J., Wang W., Prins J., Yang J. SPIN: mining maximalfrequent subgraphs from graph databases // Proc. 2004 ACMSIGKDD Int. Conf. Knowl.
Discov. data Min. - KDD ’04. —New York, New York, USA : ACM Press, Aug. 2004. — P. 581.14352. Huang K.-Y., Chang C.-H., Lin K.-Z. Prowl: An efficient frequentcontinuity mining algorithm on event sequences // Data Warehous.Knowl. Discov. — Springer, 2004. — Pp. 351–360.53. Jay N., Kohler F., Napoli A. Analysis of Social Communities withIceberg and Stability-Based Concept Lattices // Form.
ConceptAnal. Vol. 4933 / ed. by R. Medina, S. Obiedkov. — SpringerBerlin Heidelberg, 2008. — Pp. 258–272. — (Lecture Notes inComputer Science).54. Jiang C., Coenen F., Zito M. A survey of frequent subgraph mining algorithms // Knowl. Eng. Rev. — 2013. — Vol. 28, no.
01. —Pp. 75–105. — (The Knowledge Engineering Review).55. Jianyong Wang, Zhiping Zeng, Lizhu Zhou CLAN: An Algorithmfor Mining Closed Cliques from Large Dense Graph Databases //22nd Int. Conf. Data Eng. — IEEE, 2006. — Pp. 73–73.56. Jin N., Young C., Wang W. GAIA: graph classification usingevolutionary computation // Proc. 2010 Int. Conf.
Manag. data- SIGMOD ’10. — New York, NY, USA : ACM Press, June2010. — Pp. 879–890. — (SIGMOD ’10).57. Jin N., Young C., Wang W. Graph classification based on patternco-occurrence // Proceeding 18th ACM Conf. Inf. Knowl. Manag.- CIKM ’09. — New York, New York, USA : ACM Press, Nov.2009. — P. 573.58. Kaiser T. B., Schmidt S. E.
Some Remarks on the Relation between Annotated Ordered Sets and Pattern Structures // PatternRecognit. Mach. Intell. SE - 9. Vol. 6744 / ed. by S. Kuznetsov,D. Mandal, M. Kundu, S. Pal. — Springer Berlin Heidelberg,2011. — Pp. 43–48. — (Lecture Notes in Computer Science ; x).60. Kaytoue M., Kuznetsov S. O., Napoli A., Duplessis S. Mininggene expression data with pattern structures in formal conceptanalysis // Inf.
Sci. (Ny). — 2011. — Vol. 181, no. 10. —Pp. 1989–2001.14459. Kaytoue M., Kuznetsov S., Napoli A. Biclustering Numerical Datain Formal Concept Analysis // Form. Concept Anal. Vol. 6628 /ed. by P. Valtchev, R. Jäschke. — Springer Berlin Heidelberg,2011. — Pp. 135–150.
— (Lecture Notes in Computer Science).61. Kaytoue M., Marcuola F., Napoli A., Szathmary L., Villerd J. TheCoron System. Proc. of the 8th Intl. Conference on FormalConcept Analysis (ICFCA 2010) // Proc. 8th Intl. Conf. Form.Concept Anal. (ICFCA 2010). — 2010. — Pp. 55–58.62. King R., Srinivasan A., Dehaspe L. Warmr: a data mining toolfor chemical data // J. Comput. Aided.
Mol. Des. — 2001. —Vol. 15, no. 2. — Pp. 173–181.63. Klimushkin M., Obiedkov S. A., Roth C. Approaches to the Selection of Relevant Concepts in the Case of Noisy Data // Proc. 8thInt. Conf. Form. Concept Anal. — Springer, 2010. — Pp. 255–266. — (ICFCA’10).64. Krajca P., Outrata J., Vychodil V. Advances in Algorithms Basedon CbO.
// Proc. 8th Int. Conf. Concept Lattices Their Appl.(CLA’10). — 2010. — Pp. 325–337.65. Krishna V., Suri N., Athithan G. A comparative survey of algorithms for frequent subgraph discovery // Curr. Sci. — 2011. —Vol. 100, no. 2. — Pp. 190–198.66. Kum H.-C., Chang J. H., Wang W. Benchmarking the effectivenessof sequential pattern mining methods // Data Knowl. Eng. —2007.
— Vol. 60, no. 1. — Pp. 30–50.67. Kuramochi M., Karypis G. Frequent subgraph discovery // Proc.2001 IEEE Int. Conf. Data Min. — IEEE Comput. Soc, 2001. —Pp. 313–320.68. Kuramochi M., Karypis G. Finding Frequent Patterns in a LargeSparse Graph // Data Min. Knowl. Discov. — 2005. — Vol. 11,no. 3. — Pp. 243–271.14569. Kuramochi M., Karypis G.
GREW-A Scalable Frequent SubgraphDiscovery Algorithm // Proc. Fourth IEEE Int. Conf. DataMin. — Washington, DC, USA : IEEE Computer Society, 2004. —Pp. 439–442. — (ICDM ’04).70. Kuznetsov S. O. A fast algorithm for computing all intersections ofobjects in a finite semi-lattice // Autom. Doc. Math. Linguist. —1993.
— Vol. 27, no. 5. — Pp. 11–21.71. Kuznetsov S. O. Computing Graph-Based Lattices from SmallestProjections // Knowl. Process. Data Anal. SE - 3. Vol. 6581 /ed. by K. Wolff, D. Palchunov, N. Zagoruiko, U. Andelfinger. —Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. — Pp. 35–47. — (Lecture Notes in Computer Science).72. Kuznetsov S. O.
Learning of Simple Conceptual Graphs from Positive and Negative Examples // Princ. Data Min. Knowl. Discov.SE - 47. Vol. 1704 / ed. by J. Żytkow, J. Rauch. — SpringerBerlin Heidelberg, 1999. — Pp. 384–391. — (Lecture Notes inComputer Science).73. Kuznetsov S. O. Mathematical aspects of concept analysis // J.Math. Sci. — 1996. — Vol. 80, no.
2. — Pp. 1654–1698.74. Kuznetsov S. O. On stability of a formal concept // Ann. Math.Artif. Intell. — 2007. — Vol. 49, 1-4. — Pp. 101–115.75. Kuznetsov S. O. Stability as an Estimate of the Degree of Substantiation of Hypotheses on the Basis of Operational Similarity //Autom. Doc. Math. Linguist. (Nauch. Tekh. Inf.
Ser. 2). —1990. — Vol. 24, no. 6. — Pp. 62–75.76. Kuznetsov S. O., Samokhin M. V. Learning Closed Sets of LabeledGraphs for Chemical Applications // Inductive Log. Program. SE- 12. Vol. 3625 / ed. by S. Kramer, B. Pfahringer. — LectureNo. — Springer Berlin Heidelberg, 2005. — Pp. 190–208.
—(Lecture Notes in Computer Science).14677. Kuznetsov S., Obiedkov S., Roth C. Reducing the Representation Complexity of Lattice-Based Taxonomies // Concept. Struct.Knowl. Archit. Smart Appl. Vol. 4604 / ed. by U. Priss, S. Polovina, R. Hill. — Springer Berlin Heidelberg, 2007. — Pp. 241–254. — (Lecture Notes in Computer Science).78. Lam W. W. M., Chan K. C. C.
Discovering Interesting Molecular Substructures for Molecular Classification // IEEE Trans.Nanobioscience. — 2010. — June. — Vol. 9, no. 2. — Pp. 77–89.79. Laur P. A., Symphor J. E., Nock R., Poncelet P. Mining sequential patterns on data streams: A near-optimal statistical approach // Proceedigns 2 nd Int. Work. Knowl. Discov. from DataStreams. — 2005.80. Lozano S., Poezevara G., Halm-Lemeille M.-P., Lescot-FontaineE., Lepailleur A., Bissell-Siders R., Crémilleux B., Rault S., Cuissart B., Bureau R. Introduction of jumping fragments in combination with QSARs for the assessment of classification in ecotoxicology. // J. Chem. Inf. Model. — 2010.
— Vol. 50, no. 8. —Pp. 1330–1339.81. Mabroukeh N. R., Ezeife C. I. A Taxonomy of Sequential PatternMining Algorithms // ACM Comput. Surv. — New York, NY,USA, 2010. — Vol. 43, no. 1. — 3:1–3:41.82. Mannila H., Toivonen H. Discovering Generalized Episodes UsingMinimal Occurrences. // KDD. Vol. 96. — 1996. — Pp. 146–151.83. Mannila H., Toivonen H., Verkamo A. I.
Discovering frequentepisodes in sequences Extended abstract // 1st Conf. Knowl. Discov. Data Mining, Montr. CA. — 1995.84. Masseglia F., Cathala F., Poncelet P. The psp approach for mining sequential patterns // Princ. Data Min. Knowl. Discov. —Springer, 1998. — Pp. 176–184.14785. Medeiros A. K., Weijters A. J., Aalst W.
M. P. Genetic processmining: an experimental evaluation // Data Min. Knowl. Discov. — 2007. — Vol. 14, no. 2. — Pp. 245–304.86. Meinl T., Borgelt C., Berthold M. R. Discriminative closed fragment mining and perfect extensions in MoFa // Proc. 2nd Start.AI Res. Symp. (STAIRS 2004, Val. Spain). — 2004. — Pp. 3–14.87. Merwe D. V. D., Obiedkov S., Kourie D. AddIntent: A new incremental algorithm for constructing concept lattices // ConceptLattices. Vol. 2961 / ed.
by G. Goos, J. Hartmanis, J. Leeuwen,P. Eklund. — Springer, 2004. — Pp. 372–385.88. Mooney C. H., Roddick J. F. Sequential pattern mining – approaches and algorithms // ACM Comput. Surv. — 2013. —Feb. — Vol. 45, no. 2. — Pp. 1–39.89. Neznanov A. A., Ilvovsky D. A., Kuznetsov S. O. FCART: A NewFCA-based System for Data Analysis and Knowledge Discovery //Proc. Work. FCA Tools Appl. (at ICFCA’2013). — 2013.90. Nijssen S., Kok J. The Gaston Tool for Frequent Subgraph Mining // Electron. Notes Theor. Comput. Sci. — 2005. — Mar. —Vol. 127, no.