Диссертация (1137145), страница 19
Текст из файла (страница 19)
– Т. 44. –№. 5. – С. 643-666.24. Erdos P., Rényi A. On the evolution of random graphs //Publ. Math. Inst.Hung. Acad. Sci. – 1960. – Т. 5. – №. 1. – С. 17-60.25. Esuli A. Use of permutation prefixes for efficient and scalableapproximate similarity search //Information Processing & Management. –2012. – Т. 48. – №. 5. –С. 889-90226. Figueroa K., Frediksson K.
Speeding up permutation based indexingwith indexing//Proceedingsofthe2009SecondInternationalWorkshop on Similarity Search and Applications. – IEEE ComputerSociety, 2009. – С. 107-11427. Figueroa K., Navarro G., Chávez E. Metric spaces library //Onlinehttp://www. sisap. org. – 2007.28. FIPS 180-1. (1995). Secure Hash Standard. VA: U.S. Department ofCommerce/NIST, National Technical Information Service, Springfield.29.
Flower D. R. On the properties of bit string-based measures of chemicalsimilarity //Journal of Chemical Information and Computer Sciences. –1998. – Т. 38. – №. 3. – С. 379-386.30. Fraigniaud P. Small worlds as navigable augmented networks: Model,analysis, and validation //European Symposium on Algorithms. –Springer, Berlin, Heidelberg, 2007. – С. 2-11.31. Glover F. Tabu search—part I //ORSA Journal on computing. – 1989. –Т. 1. – №. 3. – С. 190-206.32. Gonzalez E.
C., Figueroa K., Navarro G. Effective proximityretrieval by ordering permutations //Pattern Analysis and MachineIntelligence, IEEE Transactions on. – 2008. – Т. 30. – №. 9. – С. 16471658.33. Harizopoulos S., Abadi D. J., Madden S., & Stonebraker M.. OLTPthrough the looking glass, and what we found there: Труды междунар.131конф. SIGMOD international conference on Management of data, ACM,9-12 июнь, 2008, Вакувер, Канада, с.
981-99.34. HerlihyM.Wait-freesynchronization//ACMTransactionsonProgramming Languages and Systems (TOPLAS). – 1991. – Т. 13. – №.1. – С. 124-149.35. Jaccard P. Etude comparative de la distribution florale dans une portiondes Alpes et du Jura. – Impr.
Corbaz, 1901.36. Jegou H., Douze M., Schmid C. Product quantization for nearestneighbor search //Pattern Analysis and Machine Intelligence, IEEETransactions on. – 2011. –Т.3. – №. 1. – С. 117-128.37. Jung, J., Sit, E., Balakrishnan, H., & Morris, R.
(2001). DNSPerformance and the Effectiveness of Caching. ACM SIGCOMM. SanFrancisco.38. Indyk P., Motwani R. Approximate nearest neighbors: towards removingthe curse of dimensionality //Proceedings of the thirtieth annualACM symposium on Theory of computing. – ACM, 1998. – С. 604-613.39. Itakura F. Analysis synthesis telephony based on the maximum likelihoodmethod //International Congress on Acoustics, – 1968. – С. 17-20.40.
Kleinberg J. The small-world phenomenon: An algorithmic perspective//Proceedings of the thirty-second annual ACM symposium on Theory ofcomputing. – ACM, 2000. – С. 163-170.41. Kleinberg, J. (1997). Two algorithms for nearest-neighbor search in highdimensions. STOC '97 Proceedings of the twenty-ninth annual ACMsymposium on Theory of computing , (pp. 599 - 608). New York, USA.42.
Knuth D. E. The Art of Computer Programming Vol. 2: SeminumericalMethods. – 1981.43. Knuth D. E. The art of computer programming: sorting and searching. –Pearson Education, 1998. – Т. 3.44. Kullback S., Leibler R. A. On information and sufficiency //Theannals of mathematical statistics.
– 1951. – С. 79-8613245. Lawler E. L., Wood D. E. Branch-and-bound methods: A survey//Operations research. – 1966. – Т. 14. – №. 4. – С. 699-719.46. Liben-Nowell D. et al. Geographic routing in social networks//Proceedings of the National Academy of Sciences of the United Statesof America. – 2005. – Т. 102. – №.
33. – С. 11623-11628.47. Loewenstern,A.,&Norbeg,A.(2008).Fromhttp://www.bittorrent.org/beps/bep_0005.html48. Lowe D.G.Distinctiveimagefeaturesfromscale-invariantkeypoints //International journal of computer vision. – 2004. – Т. 60. – №.2. – С. 91-110.49. Maymounkov P., Mazieres D. Kademlia: A peer-to-peer informationsystem based on the xor metric //International Workshop on Peer-to-PeerSystems. – Springer, Berlin, Heidelberg, 2002. – С.
53-65.50. Mondéjar R. et al. CloudSNAP: A transparent infrastructure fordecentralized web deployment using distributed interception //FutureGeneration Computer Systems. – 2013. – Т. 29. – №. 1. – С. 370-380.51. Navarro G. Searching in metric spaces by spatial approximation // StringProcessing and Information Retrieval Symposium. Cancun, Mexico,1999.
P. 141–148.52. Opsahl T. Triadic closure in two-mode networks: Redefining the globaland local clustering coefficients //Social Networks. – 2013. – Т. 35. – №.2. – С. 159-167.53. Ramasubramanian, V., & Sirer, E. G. (2004). The Design andImplementation of a Next Generation Name Service for the Internet.SIGCOMM.54. Ratnasamy, S., Francis, P., Handle, M., Karp, R., & Shenke, S. (2001). AScalable Content-Addressable Network. SIGCOMM.55.
Řehůřek R., Sojka P. Software framework for topic modelling withlarge corpora. – 2010.13356. Ripeanu M. Peer-to-peer architecture case study: Gnutella network //Peerto-Peer Computing, 2001. Proceedings. First International Conference on.– IEEE, 2001. – С. 99-100.57. Ristad E. S., Yianilos P. N. Learning string-edit distance //IEEETransactions on Pattern Analysis and Machine Intelligence. – 1998.
– Т.20. – №. 5. – С. 522-532.58. Sandberg O. Distributed routing in small-world networks //2006Proceedings of the Eighth Workshop on Algorithm Engineering andExperiments (ALENEX). – Society for Industrial and AppliedMathematics, 2006. – С. 144-155.59. Skopal T., Bustos B.
On nonmetric similarity search problems incomplex domains //ACM Computing Surveys (CSUR). – 2011. – Т. 43. –№. 4. – С. 34.60. Stoica, I. (2001). Chord: A scalable peer-to-peer lookup service forinternet applications. 4 (31), 149-160.61. Tanimoto T. An elementary mathematical theory of classification andprediction. //Internal IBM Technical Report 195862.
Tawarmalani M., Sahinidis N. V. A polyhedral branch-and-cut approachto global optimization //Mathematical Programming. – 2005. – Т. 103. –№. 2. – С. 225-249.63. Tellez E. S., Chávez E., Navarro G. Succinct nearest neighborsearch //Information Systems. – 2013. – Т. 38. – №. 7.
– С. 1019-1030.64. Travers J., Milgram S. The small world problem //Phychology Today. –1967. – Т. 1. – С. 61-67.65. Uhlmann J. K. Satisfying general proximity/similarity queries withmetric trees //Information processing letters. – 1991. – Т. 40. – №. 4. – С.175-179.66. Watts D.
J., Strogatz S. H. Collective dynamics of ‘small-world’networks//nature. – 1998. – Т. 393. – №. 6684. – С. 440-442.13467. Weber R., Schek H. J., Blott S. A quantitative analysis andperformance study for similarity-search methods in high-dimensionalspaces //VLDB. – 1998. – Т. 98.
– С. 194-205.68. Yianilos P. N. Data structures and algorithms for nearest neighbor searchin general metric spaces //SODA. – 1993. – Т. 93. – №. 194. – С. 311321.69. Zezula P. et al. Similarity search: the metric space approach. – SpringerScience & Business Media, 2006.
– Т. 32.135ПриложенияПриложение 1. Акт о внедрении результатов диссертационногоисследования Пономаренко Александра Александровича «Исследования иразработка алгоритмов поиска в распределенных масштабируемыххранилищах данных», представленной на соискание ученой степеникандидата технических наук по научной специальности 05.13.17 –Теоретические основы информатики.Приложение 2. Справка о внедрении результатов диссертационногоисследования Пономаренко Александра Александровича «Исследования иразработка алгоритмов поиска в распределенных масштабируемыххранилищах данных» в научно-исследовательской деятельности.136.