Главная » Просмотр файлов » Г.П. Гаврилов, А.А. Сапоженко - Задачи и упражнения по дискретной математике

Г.П. Гаврилов, А.А. Сапоженко - Задачи и упражнения по дискретной математике (1132709), страница 14

Файл №1132709 Г.П. Гаврилов, А.А. Сапоженко - Задачи и упражнения по дискретной математике (Г.П. Гаврилов, А.А. Сапоженко - Задачи и упражнения по дискретной математике.pdf) 14 страницаГ.П. Гаврилов, А.А. Сапоженко - Задачи и упражнения по дискретной математике (1132709) страница 142019-05-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 14)

1. Способы задания и сводыпва функций алгебрь1 логики В частности, если п = 2, то существует только один такой набор ( в этом случае вторая сумма вырождается в нуль: ~ ( й 3) = 0), 1 О ~М4- а если п = 3, то таких наборов четыре (Е(а+2) Е(а -3) (2) (3) ) 2.22. Методом неопределенных коэффициентов найти полиномы Жегалкина для следующих функций: Ц 1(х ) = х1 ~ хг, 2) )(х~) = (0100); 3) )(х~) = х1 хг Чхз); 4) 1" (хе) = х1 — 4 (хг 4 хз)' 5) Дхз) = (0110100Ц' 6) Дх з) (10001110). 7) ((х з) (0000011Ц 8) Дхз) = (01100110) 9) 7(хл) = (100000000000000Ц 10) У(х') = (0000100010010000).

2.23. Преобразуя вектор значений функции 7'(хо), построить по- дином поганкина для этой функпии, если; Ц 7"(хг) = (1000): 2) 7"(хг) = (0010); 3) У(хз) (01101110). 4) У(хе) (0111001Ц 5) У(хз) (10101110); 6) Х(х,з) (10000100) 7) Дх4) = (000001000110011Ц; 8) Дхл) = (1010101010110110); О) У(х,л) = (0100000000010ООЦ; 10) У(хл) = (ООООООО100010ООЦ.

2.24. Представив функцию Д(хп) формулой над множеством свя- зок (8с, — ), преобразовать затем полученную формулу в полипом Жегадкина функции Д(хи) (испопьзуя эквивалентности А = А ~Э 1, А.(ВЮС)=А ВбзА С, А А=А, А 1=А, АбзА=О и АЮ 450 = А): Ц 1(х ) =:с1 -+ (хг 4 Хгхг);. 2) 1(х ) = х1 (хг хгхг); 3) 1(х ) = (х1 4 хг) ~(хг ф хз); 4) 7(х ) = (х1 Ь'хг) (хг ~хз); с) е( 3) .

) (( . ~ х ) ~ х 6) Дх ) = (х1 -4 (хг -4 хз)) .((х1 -4 хг) 4 хз), 7) гл(Х ) = (Х1 Ю Хг)'в'(Хг ). ХЗ); 8) 1(х~) = (х1 -о хг) †(хз †х1хл); О) 1(х ) — х1 " (тг 4 ((хз схг) с хл))~ 10) 1 (х ) = х1 Ч хго хз) х4 о хгхгхз. 2.25. Показать, что х; является существенной переменной функ- ции дхо') тогда и только тогда, когда х; явно входит в полипом Жегалкина этой функции.

2.26. Найти число: Ц монотонных элементарных конъюнкций ранга т над множест- вом переменных Х" = (х1, хг, ..., х„) (О ( г ~ (и); 2) полиномов Жегалкина степени г над множеством перемен- ныхХп (0(г(п); у й Специалвиые предегпавле~пн булевых бгупкццц 59 3) полиномов Жегалкина степени г над множеством Х", обращающихся в 1 на наборе 1 (О < и < п); 4) полиномов Жсгадкина длины 1е над множеством Х", обращающихся в О на наборах О и 1 (О < й < 2и); 5) попиномов Жегалкина степени г над множеством Х', удовлетворяющих условию; в попиноме не могут содержаться одновременно (в качестве слагаемых) конъюнкции одинакового ранга (О < г < и). 2.27. Выяснить, на скольких наборах из В" обращается в 1 полипом Р(хи): 1) Р(х ) =хг'хзчгх1'хзЮ...Юхг'хи — <г)хгхг г'=-2 и 2) Р(х ) — хг ' хз чг а 3 ги ° гх хи — хгхз ги (х) 3) Р(х ) =юг 'хач хг 'хзгихлге ° .гехи = хгхз гхг хгхз пг сгг хгг гг, ~ )4; и г'=4 4) Р(хи) = хгхгхз 6~ гтг х, и.

> 4; г=л б) Р(хи) =х, ...х, Ехя„..,х„, 1 < й < п; и б) Р(хи) = ® хг... хе бг 1, и > 1; г=1 7) Р(хи) = ()) хг... х, гхг+г... хиг п > 2; 8)Р(хи)=хгОЗ 9 т,хч п>2; 1<г<1<и и 9) Р(х') = (Э х,х, ~Э (() х„п ) 2. 1<г<1<и г=у 2.28. Найти функцию 7"(хи), у которой длина попинома Жегапкина в 2и раз превосходит длину ее совершенной д. н, ф. (и > 1). 2.29. Локазатьг что функция Дхи), реализуемая попиномом Жегалкина степени й > О, принимает каждое из значений О и 1 не менее чем на 2" Я наборах из В" (т.е. ~Лгу( > 2" " и ~йу~ > 2" ~). 2.30.

Показать, что дпя всякого 1 (О < 1 < 2и) существует попином Жегалкина Р(хи), обращающийся в 1 ровно на 1 наборах из В" и имеющий длину, не превосходящую и. 2.31. Показать, что всякая бупева функция Дхи), отличная от константы О, представима в виде (-)) К,г где К; (г = 1г ..., в) г=г различные элементарные конъюнкции, каждая из которых содержит не более одного отрицания переменной, а в < 2и 2.32. Пусть функция 7"(хи'), где п > 3, зависит существенно от всех своих переменных и реализуется попиномом Жегапкина степени и. Локазатги что найдутся две такие переменные, отождествление которых уменьшает число существенных переменных ровно на 1. Глава П ЗАМКНУТЫЕ КЛАССЫ И ПОЛНОТА СИСТЕМ ФУНКЦИЙ АЛГЕБРЫ ЛОГИКИ 8 1. Понятия функциональной замкнутости и полноты Замыканием [К) множества К функций алгебры логики называется совокупность всех функций из Рг, являющихся суперпозициями функций из множества Л.

Множество Л называется [функционально) за,мкнутьгм, если [К) = К. Замкнутые множества называются также замкнутыми классами. Подмножество Р функций из замкнутого множества К называется (функционально) полным в К, если [Р) = К. Полное в замкнутом классе К множество Р называется базисом класса Л, если для всякого собственного подмножества Р' С Р выполнено [Р') ф К. Подмножество Р функций из замкнутого класса К называется иреднолным классом в К, если [Р) ф К и для всякой функции 7 Е К~,Р выполняется равенство [Р ьз' (Д) = К.

Функции тг и гг назовем конгрузнтными, если одна из них может быть получена из другой заменой переменных (без отождествления). Например, функции ху и уг конгрузнтны, а функции ху и гг не являются конгрузнтными. При рассмотрении вопросов, связанных с замкнутыми классами, бывает удобно указывать по одному представителю из множества попарно конгруэнтных функций. Например, класс (х, у, г, ..., хы хг, ... ), состоящий из всех тождественных функций, будет обозначаться через (х).

Если А — некоторое множество функций, то через А(Х") или, короче, через А" будет обозначаться множество всех тех функций из А, которые зависят только от переменных хы хг, ..., хо. 1.1. Построить множество всех функций, зависящих от переменных хы хг и принадлежащих замыканию множества А: Ц А = (х); 2) А = (хг 63 хг); 3) А = (О, х); 4) А = (хгхг); 5) А = (хгхгохгхз '' хзхь); б) А = (хг Ч хг); 7) А = (О, хг - хг):, 8) А = (хьхг, хг Ф хг); 9) .4 = (хг бЗ хг Ф хз); 10) -4 = (хьхг у хгхз у хзхг); 1Ц А = (хг ьо хг Ф хз ег Ц: 12) А = (хгхг); 1 1. Пониизин функциональной замкнутости и иолноюы 61 13) А = (хзхг Р хгхз Р хзхг); 14) А = (хз'4 хг Мхз); 15) А = (хзхг Ч хз).

1.2. Показать, что 7" Е [А], выразив 7" формулой над множеством А: 1) 7'=х, А=(О.,хэу); 2) 7'=хну, А=(х(11); 3)~=х, А=(хну); 4)7'=херах, А=(х-у); 5)7'=О, А=(хубзз); 6)1"=х, А=(ху); 7) у=хчу, А=(хру); 8) 7'=х, А=(хунуг~lзх); 9)~=ху, А=(хуаз); 10) з = хуг Ч 1(х р у у з), А = (ху р уя'4 гх); 11) 7"=хбзуйз, А=(х,хуЧугЧгх); 12*) 7" = х 9 у 9 г, А = (ху Р ура Ух); 13) У = х Е у, А = (ху, х р у); 14) У = х ' 7у, А = (х -+ у): 15) У =ту, А = (хну, хну).

1.3. Выписать все попарно неконгруэнтные функции 7'(х~), принадлежащие замыканию множества А: 1) А=(1,х); 2) А=(ху); 3) А=(х у); 4) А = (ху'1~ уг Ч гх): 5) А = (х Ю у В з й Ц:, 6) А =(хм у Р з); 7) А = (х — > у): 8) А = (ху Р г); 9) А = (ху): 10) А = (х(х'~ у)(у р у)(хМух)). 1.4. Из полной для класса ~А) системы выделить базис; 1) А=(0,1,х); 2) А=(хну,х у., Ц; 3) А=(х, хну, хбубзг); 4) А=(ху, хну, хуЧз); 5) А = (хну, х -э у); 6) А = (ху, ху); 7) А=(хзрувг,хуругргх, х); 8)А=(1,х у,хву~ЭзбзЦ:, 9)А=(ху,хуЧхг); 10) А = (х, х Ч у, х Ч у Ч г, ху 7 г). 1.5. Выяснить, какие из указанных ниже множеств являются замкнутыми множествами: 1) множество всех функций от одной переменной; 2) множество всех функций от двух переменных: 3) множество всех функций Дхы хг, ...

х„) таких, что 7'(1, 1, ... ...,1)=1., и>0; 4) множество всех функций Д(хо), и > О, таких, что 7"(1, 1, ... ..., 1) = 0; 5) множество всех симметрических функций, т.е. таких функ- /12... и1 ций 1" (хз, хг, ..., х„), что для любой подстановки ( .. ' ' ' . ~ спра~й 1г... ~..) ведливо равенство Дхы хг, ..., хн) = 1(хи, х„,,х;„); 6) множество всех функций 7(х") таких, что ~1зу ~ = 2" 7) множество всех функций, выражаемых полиномом Жегалкина не выше первой степени; 62 Гл. П. Залкндудпыс классы и полнота 8) множество всех функций, выражаемых полиномом Жегалкина не выше второй степени; 9) множество всех функций., допускающих представление в виде д.

н. ф. и не содержащих отрицаний переменных; 10) множество всех функций, любая д. н. ф. которых содержит хотя бы одно отрицание переменной; 1Ц множество всех функций )'(яи), п > О, полипом Жегалкина которых содержит 2" — 1 слагаемых; 12) множество всех функций Д(ти), и > О, полипом Жегалкина которых содержит 2" — 1 слагаемых и не содержит 1 в качестве слагаемого; 13) множество всех функций д"(яи), и > 1, таких, что [дУу[ = 1; 14) множество всех функций У(х"), и > 1, таких, что [дУу[ = 1 и 1(1, 1, ..., Ц = О.

1.6. Показать, что: Ц пересечение замкнутых классов является замкнутым классом; 2) объединение двух замкнутых классов, вообще говоря, не является замкнутым классом; 3) разность двух замкнутых классов, вообще говоря, не является замкнутым классом; 4) дополнение непустого и отличного от Рз замкнутого класса К до Рд не является замкнутым. 1.7. Показать, что класс А, предполный в замкнутом классе К, является замкнутым.

Характеристики

Тип файла
PDF-файл
Размер
27,45 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6401
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее