Главная » Просмотр файлов » М.Н. Чепурин, Е.А. Киселёва - Курс экономической теории (djvu) 2006

М.Н. Чепурин, Е.А. Киселёва - Курс экономической теории (djvu) 2006 (1128949), страница 55

Файл №1128949 М.Н. Чепурин, Е.А. Киселёва - Курс экономической теории (djvu) 2006 (М.Н. Чепурин, Е.А. Киселёва - Курс экономической теории (djvu) 2006) 55 страницаМ.Н. Чепурин, Е.А. Киселёва - Курс экономической теории (djvu) 2006 (1128949) страница 552019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 55)

В этом случае МгтТ$ будет равна О, а изокванта будет иметь вид прямого угла, как это изображено на рис 10.55. Обязательным условием перехода на более высокую изокванту такого вида является соблюдение заданной пропорциональности в использовании ресурсов. Если будет увеличено количество одного ресурса без соответствующего изменения в 238 Правило минимизации издержек и условия максимизации прибыли Фирма, осуществляющая свою деятельность с использованием двух переменных частично взаимозаменяемых факторов, сталкивается с проблемой оптимального выбора комбинации ресурсов при каждом заданном объеме выпуска продукции. Очевидно, что фирма, максимизирующая прибыль, будет стремиться выбрать такое сочетание ресурсов, которое окажется самым дешевым. Таким образом, задача сводится к тому, чтобы минимизировать издержки фирмы для каждого заданного объема производства.

Для решения поставленной задачи необходимо ввести понятие изокосты. Изокоста является одновременно и линией равных издержек, и линией бюджетного ограничения фирмы. Изокоста строится следующим образом. Допустим, что бюджет фирмы для закупки факторов, например, капитала и труда, составляет 1000 руб.

Цена 1 ед. капитала равна 500 руб., а 1 ед. труда — 250 Руб. Если в рамках заданного бюджета фирма затратит деньги на покупку только одного из двух факторов, то она сможет купить либо 2 ед. капитала, либо 4 ед. труда. Отметим на графике точки, соответствующие этой комбинации факторов (см.

рис. 10.ба). Соединив эти точки, мы получим иэокосту 239 Глава 10 О 1 2 а) Рис. 10.0. 1. О б) Изокосты О Е Минимизация издержек дпя каждого заданного объема производства Рис. 10.7. (17) Р )Р = МР,)МР 240 241 16 Крро еиоиомииеокои теории Любая точка на изокосте показывает такое сочетание двух факторов, при котором совокупные расходы на их приобретение будут равны. Изоко- сты, изображенные на рис.10.6, описываются следующим уравнением: В=Р хК+Рхб (15), где  — бюджет фирмы, предназначенный для закупки факторов; Р, — цена единицы капитала; К вЂ” количество капитала; Р„- цена единицы труда; (.

— количество труда. Наклон изокосты равен отношению цен используемых факторов умноженному на ( — 1), так как изокоста имеет отрицательный наклон. Иначе говоря, если фирма увеличивает количество одного фактора, то она должна соответственно сократить использование другого, что- бы сохранить неизменными совокупные расходы на приобретение факторов, т. е.

Р„х д(. = — (Р х дК). Отсюда следует„что — ЛК/д(. = Р,1Р„ (16) Любое изменение цены на один из двух используемых ресурсов ведет к изменению наклона изокосты. В нашем примере наклон изокосты равен -0,5 Р,1Р„= 2501500 х ( — 1) = — 0,5. Предположим, что цена 1 ед. труда возросла до 400 руб., а цена 1 ед. капитала не изменилась. В этом случае наклон изокосты будет равен -0,8. Как видно из рис.10 66, изокоста, отражающая новое соотношение цен на используемые ресурсы, имеет более крутой вид.

В том случае, когда изменяется заданная величина бюджета фирмы, предназначенного на покупку ресурсов, изокосты сдвигаются влево или вправо в зависимости от того, уменьшилась или возросла сумма бюджета (см. рис 10.6а). 'Геория производства и првдельнод производительности факторов Для ответа на поставленный выше вопрос, какое сочетание факторов для каждого заданного объема выпуска является самым дешевым, необходимо совместить карту изоквант с изокостами. Точки касания изокост с изоквантами покажут оптимальное, с точки зрения затрат, сочетание факторов для каждого заданного объема выпуска продукции (см. рис 10.7). Комбинация факторов в точке А обеспечит наименьшие издержки при объеме выпуска продукции, равном О,; в точке  — объеме, равном О,; в точке С вЂ” объеме, равном О,. Все другие возможные комбинации факторов, принадлежащие изоквантам с объемом производства соответственно О„О„О,, лежат на более высоких линиях бюджетного ограничения.

Соединив точки А, В, С, мы получим кривую, показывающую оптимальные комбинации ресурсов при существующих ценах на них для каждого заданного объема выпуска продукции. Принимая решение об объемах производства, фирма будет двигаться вдоль данной кривой, которую принято называть траекторией роста. Тот факт, что минимизация издержек достигается в точке касания изокосты и изокванты, позволяет сделать важный экономический вывод.

Как известно, наклон изокосты равен отношению цен на факторы (Р )Р ), а наклон изокванты равен МЙТЯки которая вычисляется по к' ! формуле (14). В точке касания наклон изокосты равен наклону изокванты. Следовательно, равновесие достигается тогда, когда отношение 1 цен на факторы равно отношению их предельных продуктов, т. е. Глава 10 Соответственно, отношения предельных продуктов факторов к ценам последних должны быть равны между собой; (1 8) МР, 1Р, = МР 1Р„ С помощью уравнения (18) мы можем сформулировать правило минимизации издержек для каждого заданного объема выпуска продукции; оптимальное сочетание факторов, используемых в процессе производства, достигается тогда, когда последний затраченный рубль на покупку каждого фактора дает одинаковый прирост общего выпуска продукции.

С точки зрения рационального экономического поведения, это означает, что относительно более дорогой фактор производства замещается относительно более дешевым. Так, если МР„ /Р, > МР, lР„то фирма минимизирует свои издержки путем замены капитала трудом. В ходе этой замены предельный продукт труда будет уменьшаться, а предельный продукт капитала расти. Замена будет осуществляться до тех пор, пока не будет достигнуто равенство взвешенных по соответствующим ценам предельных продуктов факторов.

И наоборот, если МР, IР, < МР„IР то фирме следует замещать труд капиталом для достижения равенства (18). Для иллюстрации данных положений рассмотрим условный числовой пример. Предположим, что единица труда и единица капитала имеют одну и ту же цену, равную 100 руб. При этом фирма использует 4 ед. труда и 9 ед. капитала. Предельный продукт четвертой единицы труда и девятой единицы капитала равны соответственно 12 и 6 ед. Подставив в уравнение (18) числовые значения, получим следующее неравенство: 12/100 > 6/100.

Данная комбинация факторов не соответствует требованиям правила минимизации издержек, т. е. не является оптимальной. Последний рубль, затраченный на приобретение дополнительной единицы труда, дает прирост продукции, равный 0,12 ед., а последний рубль, затраченный на приобретение дополнительной единицы капитала, только 0,06 ед.

В этом случае фирме для увеличения выпуска продукции при тех же самых затратах следует заменить относительно более дорогой фактор относительно более дешевым. Другими словами, нужно увеличить количество применяемого труда и уменьшить количество используемого капитала. Замещение капитала трудом необходимо проводить до тех пор, пока отношение предельного продукта каждого фактора к их ценам не будет равно.

Предположим, что в нашем примере предельные продукты шестой единицы труда и седьмой единицы капитала окажутся равными и составят 10 ед. продукции. В этом случае фирма обеспечивает минимизацию издержек при заданном объеме производства или, что одно и то же, увеличивает выпуск продукции при тех же самых затратах.

242 7вароя проазводства и прадвлннсд проазводатвлннссти факторов МЯР, = Р,, а МЯР, = Р„, т. е. М72Р, lР, = МИР lР„= 1 (19) Соблюдение этого условия означает, что фирма функционирует эффективно, т. е. обеспечивается оптимальная комбинация факторов, минимизирующая издержки производства, при единственно возможном объеме выпуска, максимизирующем прибыль.

Основные понятия: ргодысбоп 1ипсбоп ге1вгпз 1о зса(е сопз1ап1 геюгпз 1о асане ~псгеавп9 геюгпз 1о зса1е десгеагяп9 ге1вгпз 1о зса)е 1о1а~ ргооос1 о1 а 1ас1ог гпаг9~па! ргосос1 о1 а 1ас1ог Производственная функция Отдача от масштаба Постоянная отдача от масштаба Возрастающая отдача от масштаба Убывающая отдача от масштаба Общий продукт фактора Предельный продукт фактора 243 Однако минимизация издержек при заданном объеме производства не означает, что данный объем обеспечивает фирме максимальную прибыль. Минимизация издержек есть обязательное, но недостаточное условие для максимизации прибыли.

Разница между минимизацией издержек и максимизацией прибыли заключается в следующем: при достижении оптимальной комбинации факторов для любого объема выпуска во внимание принимаются цены факторов и их предельная производительность. При формулировке условий максимизации прибыли необходимо учитывать и такую величину, как предельный продукт фактора в денежном выражении, отражающий спрос на продукцию, производимую с помощью этих факторов. Это связано с производным характером спроса на факторы. Как же можно определить объем производства, при котором фирма максимизирует свою прибыль? Для ответа на поставленный вопрос необходимо воспользоваться правилом использования ресурсов, изложенным в 8 3 данной главы.

Характеристики

Тип файла
DJVU-файл
Размер
12,14 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее