2015 Ответы на вопросы (1124584), страница 3
Текст из файла (страница 3)
Эта модель рассматривает виртуальный адрес, как номер сегмента и смещение в нем. Имеется также аппаратная таблица сегментов, посредством которой из виртуального адреса получается т.н. линейный адрес, который, в свою очередь, представляется в виде номера страницы и величины смещения в ней. А затем, используя таблицу страниц, получается непосредственно физический адрес.
Сегментная адресация памяти — схема логической адресации памяти компьютера в архитектуре x86. Линейный адрес конкретной ячейки памяти, который в некоторых режимах работы процессора будет совпадать с физическим адресом, делится на две части: сегмент и смещение. Сегментом называется условно выделенная область адресного пространства определённого размера, а смещением — адрес ячейки памяти относительно начала сегмента. Базой сегмента называется линейный адрес (адрес относительно всего объёма памяти), который указывает на начало сегмента в адресном пространстве. В результате получается сегментный (логический) адрес, который соответствует линейному адресу база сегмента+смещение и который выставляется процессором на шину адреса. Селектором называется число (в x86 — 16-битное), однозначно определяющее сегмент. Селектор загружается в сегментные регистры. В реальном и защищённом режимах x86-процессора функционирование сегментной адресации отличается.
Страничная трансляция
Механизм сегментации обеспечивает превосходную защиту, но он не очень удобен для реализации виртуальной памяти (подкачки). В дескрипторе сегмента есть бит присутствия, по нему процессор определяет, находится ли данный сегмент в физической памяти или он находится на внешнем запоминающем устройстве (на винчестере). В последнем случае генерируется исключение #11, обработчик которого может подгрузить сегмент в память. Неудобство заключается в том, что различные сегменты могут иметь различную длину. Этого можно избежать, если механизм подкачки реализовывать на основе страничного преобразования. Особенностью этого преобразования является то, что процессор в этом случае оперирует с блоками физической памяти равной длины (4Кбайт) - страницами. Страницы не имеют непосредственного отношения к логической структуре программы.
Страничное преобразование действует только в защищенном режиме и включается установкой в 1 бита PG в регистре CR0.
В страничном преобразовании участвуют два типа структур: каталоги таблиц (Page Directory) и таблицы страниц (Page Table). Эти структуры состоят из 1024 32-битных элементов. Элементы содержат старшие 20 бит физического адреса адресуемых объектов. Элементы таблицы страниц (Page Table Entry - PTE) адресуют страницы, а элементы каталога таблиц (Page Directory Entry - PDE) адресуют таблицы страниц. Старшие 20 бит физического адреса каталога таблиц хранится в регистре CR3 (Page Directory Base Register - PDBR). (Это единственный регистр процессора, который содержит физический адрес памяти). Все структуры выравниваются по границе страницы.
В процессе страничной трансляции адресов полученный линейный адрес разбивается на три части. Старшие десять бит (Directory) линейного адреса являются индексом элемента из каталога таблиц. По этому элементу определяется физический адрес таблицы страниц. Биты 21-12 (Table) линейного адреса выбирают элемент из этой таблицы страниц. Выбранный элемент определяет физический адрес страницы. Младшие 12 бит (Offset) линейного адреса определяют смещение от начала страницы.
Страницы начинаются на границах 4Кбайт областей памяти, поэтому младшие 12 бит адреса страницы всегда равны нулю. В каталоге таблиц элементы хранят физические адреса таблиц страниц. В таблице страниц элементы хранят физические адреса самих страниц.
-
Переключение между режимами работы процессора. Прерывания и системные вызовы. Выполнение системных вызовов без переключения в привилегированный режим.
Защищенный режим (Protected Mode)
Основным режимом работы микропроцессора является защищенный режим. Ключевыми особенностями защищенного режима являются: виртуальное адресное пространство, защита и многозадачность.
В защищенном режиме программа оперирует адресами, которые могут относиться к физически отсутствующим ячейкам памяти, поэтому такое адресное пространство называется виртуальным. Размер виртуального адресного пространства программы может превышать емкость физической памяти и достигать 64Тбайт. Для адресации виртуального адресного пространства используется сегментированная модель, в которой адрес состоит из двух элементов: селектора сегмента и смещения внутри сегмента. С каждым сегментом связана особая структура, хранящая информацию о нем, - дескриптор. Кроме "виртуализации" памяти на уровне сегментов существует возможность "виртуализации" памяти при помощи страниц - страничная трансляция. Страничная трансляция предоставляет удобные средства для реализации в операционной системе функций подкачки, а кроме того в процессорах P6+ обеспечивает 36-битную физическую адресацию памяти (64Гбайт).
Встроенные средства переключения задач обеспечивают многозадачность в защищенном режиме. Среда задачи состоит из содержимого регистров МП и всего кода с данными в пространстве памяти. Микропроцессор способен быстро переключаться из одной среды выполнения в другую, имитируя параллельную работу нескольких задач. Для некоторых задач может эмулироваться управление памятью как у процессора 8086. Такое состояние задачи называется режимом виртуального 8086 (Virtual 8086 Mode). О пребывании задачи в таком состоянии сигнализирует бит VM в регистре флагов. При этом задачи виртуального МП 8086 изолированы и защищены, как от друг друга, так и от обычных задач защищенного режима.
Защита задач обеспечивается следующими средствами: контроль пределов сегментов, контроль типов сегментов, контроль привилегий, привилегированные инструкции и защита на уровне страниц. Контроль пределов и типов сегментов обеспечивает целостность сегментов кода и данных. Программа не имеет права обращаться к виртуальной памяти, выходящей за предел того или иного сегмента. Программа не имеет права обращаться к сегменту данных как к коду и наоборот. Архитектура защиты микропроцессора обеспечивает 4 иерархических уровня привилегий, что позволяет ограничить задаче доступ к отдельным сегментам в зависимости от ее текущих привилегий. Кроме того, текущий уровень привилегий задачи влияет на возможность выполнения тех или иных специфических команд (привилегированных инструкций). Функции страничной трансляции, впервые появившиеся в МП Intel386, обеспечивают дополнительные механизмы защиты на уровне страниц.
Реальный режим (Real Mode)
В реальном режиме микропроцессор работает как очень быстрый 8086 с возможностью использования 32-битных расширений. Механизм адресации, размеры памяти и обработка прерываний (с их последовательными ограничениями) МП Intel386 в реальном режиме полностью совпадают с аналогичными функциями МП 8086. В отличие от 8086 микропроцессоры 286+ в определенных ситуациях генерируют исключения, например, при превышении предела сегмента, который для всех сегментов в реальном режиме - 0FFFFh.
Имеется две фиксированные области в памяти, которые резервируются в режиме реальной адресации:
-
область инициализации системы
-
область таблицы прерываний
Ячейки от 00000h до 003FFH резервируются для векторов прерываний. Каждое из 256 возможных прерываний имеет зарезервированный 4-байтовый адрес перехода. Ячейки от FFFFFFF0H до FFFFFFFFH резервируются для инициализации системы.
Режим системного управления (System Management Mode)
Режим системного управления предназначен для выполнения некоторых действий с возможностью их полной изоляции от прикладного программного обеспечения и даже операционной системы. Переход в этот режим возможен только аппаратно. Когда процессор находится в режиме SMM, он выставляет сигнал SMIACT#. Этот сигнал может служить для включения выделенной области физической памяти (System Management RAM), так что память SMRAM можно сделать доступной только для этого режима. При входе в режим SMM процессор сохраняет свой контекст в SMRAM (контекст сопроцессора не сохраняется) по адресу SMM Base и передает управление процедуре, называемой обработчиком System Management Interrupt, по адресу SMM Base+8000h (по умолчанию SMM Base содержит значение 30000h). Состояние процессора в этот момент точно определено: EFLAGS обнулен (кроме зарезервированных битов), сегментные регистры содержат селектор 0000, базы сегментов установлены в 00000000, пределы - 0FFFFFFFFh.
Следует отметить, что в режиме SMM не предусмотрена работа с прерываниями и особыми случаями: прерывания по IRQ и SMI# замаскированы, пошаговые ловушки и точки останова отключены, обработка прерывания по NMI откладывается до выхода из режима SMM. Если необходимо обеспечить работу с прерываниями или особыми случаями, то надо инициализировать IDT и разрешить прерывания, выставив флаг IF в регистре EFLAGS. Прерывания по NMI будут разблокированы автоматически после первой же команды IRET.
При возврате из SMM (по инструкции RSM) процессор восстанавливает свой контекст из SMRAM. Обработчик может программно внести изменения в образ контекста процессора, тогда процессор перейдет не в то состояние, в котором произошло SMI. Если SMI было получено во время выполнения инструкции HLT, то дальнейшие действия при выходе из SMM определяются значением поля "Auto HALT Restart": процессор может снова вернуться к инструкции останова или перейти к выполнению следующей команды. Если SMI произошло при выполнении инструкции ввода-вывода, то в зависимости от значения поля "I/O Instruction Restart" возможен рестарт инструкции ввода вывода.
Эти особенности режима системного управления позволяют использовать его для реализации системы управления энергосбережением компьютера или функций безопасности и контроля доступа.
Переключение между режимами
Прерывания используются для обработки асинхронных внешних к процессору событий. Исключения обрабатывают нарушения, обнаруженные самим процессором в ходе выполнения инструкций. Прерывания: маскируемые (приходят на контакт INTR), немаскируемые (приходят на контакт NMI). Исключения: программные прерывания (int n), отказы (fault) – обнаруживаются до или во время выполнения инструкции, возможна повторная попытка выполнения, ловушки – обнаруживаются сразу после инструкции, вызвавшей исключение, прерывания (abort) – исключения, повлекшие серьезные ошибки, без возможности повторного выполнения программы.
Системные вызовы
Код, работающий в пользовательском режиме, не может запускать какой-либо код, который расположен в области памяти супервизора, или получать доступ к области супервизора (смотрите флаги записей таблицы страниц) и не может запускать код, в котором используются привилегированные команды, например, hlt. Поэтому в большинстве ядер предоставляется интерфейс, который можно пользоваться в обычных функциях. Обращение к ядру через этот интерфейс называется "системным вызовом".
Способ, с помощью которого в архитектуре x86 реализуются системные вызовы, представляет собой работу с программными прерываниями. В пользовательской программе задается регистр, в котором указывается, какие системные функции следует выполнять, а затем в других регистрах настраиваются параметры. Затем будет выполнено программное прерывание для определенного вектора - в linux используется 0x80. Программное прерывание вызывает изменение режима — происходит переход в кольцо 0; в ядре должен быть обработчик для этого вектора прерывания и, соответственно, должна быть выполнена диспетчеризация этого системного вызова.
-
Аппаратно-программные средства поддержки мультипрограммного режима – система прерываний, защита памяти, привилегированный режим.
Для корректного мультипрограммирования система должна обеспечивать эксклюзивное владение программ выделенными им участками памяти. Если возникает задача обеспечения множественного доступа к памяти, то это должно осуществляться с согласия владельца этой памятью. Итак, первое требование к системе — это наличие т.н. аппарата защиты памяти. Сразу отметим, что режим защиты памяти нельзя делать чисто программным способом, поскольку если данный режим будет обеспечивать операционная система (т.е. каждый раз сравнивать получаемый исполнительный адрес, не вышел ли он за границы дозволенного программе диапазона адресов), то производительность вычислительной системы в целом будет крайне низкой.
Реализация аппарата защиты памяти может быть достаточно простой: в процессоре могут быть специальные регистры (регистры границ), в которых устанавливаются границы диапазона доступных для исполняемой задачи адресов оперативной памяти. Соответственно, когда устройство управления в центральном процессоре вычисляет очередной исполнительный адрес (это может быть адрес следующей команды или же адрес необходимого операнда), автоматически проверяется, принадлежит ли полученный адрес заданному диапазону. Если адрес принадлежит диапазону, то продолжается обработка задачи, иначе же в системе возникает прерывание (т.н. прерывание по защите памяти).