Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология (1120992), страница 42
Текст из файла (страница 42)
Здесь же было обнаружено, что как между ответвлениями митохондриального ретикулума, так и между ним и нитевидными продольными митохондриями существуют специальные межмитохондриальные соединения или контакты (ММК). Они образованы плотно прилегающими наружными митохондриальными мембранами контактирующих митохондрий, межмембранное пространство и мембраны в этой зоне имеют повышенную электронную плотность (рис. 219). Было сделано предположение, что через эти специальные образования может происходить функциональное объединение соседних митохондрий и митохондриальных ретикулумов в единую, кооперативную энергетическую систему. Все миофибриллы в мышечном волокне сокращаются синхронно по всей их длине, следовательно, и поступление АТФ на любом участке этой сложной машины тоже должно происходить синхронно, а это может происходить лишь в том случае, если огромное количество разветвленных митохондрий-проводников будет связано друг с другом клеммами-контактами (ММК).
Доказать то, что ММК действительно участвуют в энергетическом объединении митохондрий друг с другом удалось на другом типе поперечно-исчерченнных мышц – на кардиомиоцитах, клетках сердечных мышц.
Оказалось, что хондриом клеток сердечной мышцы не образует ветвящихся структур, а представлен множеством небольших вытянутых митохондрий, располагающихся без особого порядка между миофибриллами. Однако было найдено, что все соседние митохондрии стыкуются друг с другом с помощью митохондриальных контактов такого же типа, как в скелетной мышце, только их число очень велико: в среднем на одну митохондрию приходится 2-3 ММК, которые связывают митохондрии в единую цепь, где каждым звеном такой цепи (Streptio mitochondriale) является отдельная митохондрия (рис. 220). Такой тип хондриома также может служить целям синхронного сокращения всех саркомеров в миофибриллах кардиомиоцитов. Для такой кооперативной координации митохондрий должны служить множественные межмитохондриальные контакты (рис. 221, 222).
Для доказательства этой гипотезы были использованы кардиомиоциты эмбрионов крысы в культуре ткани. Эти клетке имеют гетерогенные по размеру и форме митохондрии, расположенные между миофибриллами (рис. 223). В электронном микроскопе было обнаружено, что между некоторыми митохондриями были видны ММК, объединяющие их в небольшие группы - кластеры. В дальнейшем были проведены эксперименты, аналогичные тем, которые были сделаны на культуре фибробластов: митохондрии живых кардиомиоцитов окрашивали этилродамином, а затем одну из митохондрий в группе облучали лазерным микропучком. Облучение одиночных митохондрий приводило к быстрому их гашению. В одних случаях погасала только облученная митохондрия, в других – теряла люминесценцию вся группа митохондрий (рис. 224). Электронная микроскопия показала, что в последнем случае митохондрии в кластере были связаны друг с другом с помощью ММК. Следовательно, если одиночные митохондрии теряют этилродамин после лазерного укола вследствие электрического пробоя митохондриальной мембраны, то гашение группы митохондрий, связанных ММК, доказывает, что ММК, как клеммы, объединяют в единую цепь потенциалы одиночных митохондрий. По всей вероятности, области ММК проницаемы для протонов, которые могут передаваться с внутренней митохондриальной мембраны одной митохондрии на внутреннюю мембрану другой, и тем самым объединять митохондрии в единую энергетическую систему.
Как оказалось, межмитохондриальные контакты (ММК), как обязательная структура сердечных клеток, встречаются не только у крыс. Они обнаружены в кардиомиоцитах как желудочков, так и предсердий всех позвоночных животных: млекопитающих, птиц, пресмыкающихся, амфибий и костистых рыб. Более того ММК были обнаружены (но в меньшем числе) в клетках сердца некоторых насекомых и моллюсков. Эти наблюдения говорят о чрезвычайно важной биологической роли этих структур, характеризующих митохондрии интенсивно и постоянно работающих клеток сердца.
Было обнаружено, что количество ММК в кардиомиоцитах изменяется в зависимости от функциональной нагрузки на сердце. Так, если у крыс вызвать экспериментальное усиление работы сердечной мышцы, например при компенсаторной гипертрофии миокарда (частичная перевязка аорты), то количество ММК увеличивается почти вдвое. Увеличивается число ММК и при повышении физических нагрузок животных. Наоборот, при ограничении подвижности животных, находящихся в тесных камерах более 4-х месяцев (как в космическом корабле), при падении нагрузки на сердечную мышцу, происходит резкое сокращение числа ММК.
Те же закономерности наблюдается и у других животных в естественных условиях их жизни. Так уменьшается число ММК у зимних спящих летучих мышей, у зимующих сурков. Резко возрастает число ММК в кардиомиоцитах летающих стрижей, по сравнению с их птенцами до вылета из гнезда. Из этих наблюдений можно сделать обобщение: чем выше функциональная нагрузка на кардиомиоциты, чем выше потребление энергии, тем большее количество ММК связывает отдельные митохондрии в единую кооперативную систему.
На рис. 225 представлены варианты организации хондриома в различных клетках. Хондриом может иметь различную композицию в зависимости от энергетических потребностей клетки. В простейшем (и чаще встречающемся ) случае он может быть представлен множеством разрозненных небольших митохондрий, функционирующих независимо друг от друга и снабжающих АТФ небольшие участки цитоплазмы. В другом случае длинные и разветвленные митохондрии могут энергетически обеспечивать отдаленные друг от друга участки клетки. Вариантом такой протяженной системы может быть хондриом типа митохондриального ретикулума, который встречается как у одноклеточных, так и у многоклеточных организмов. Особенно сложно этот вид хондриома выражен в скелетных мышцах млекопитающих, где группы гигантских разветвленных митохондрий связаны друг с другом с помощью ММК. Вообще же наличие ММК характерно для хондриомов сократимых структур. Особенно обильно ММК представлены в клетках сердечных мышц, где они функционально связывают множественные отдельные митохондрии в единую разветвленную цепь.
Глава 19. Пластиды
Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы). Подобно митохондриям, пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза. У высших растений найден целый набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт (рис. 226а).
Хлоропласт
Как уже указывалось, строение хлоропласта в принципе напоминает строение митохондрии. Обычно это структуры удлиненной формы с шириной 2-4 мкм и протяженностью 5-10 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. Количество хлоропластов в клетках разных растений не стандартно. Так, у зеленых водорослей может быть по одному хлоропласту на клетку. Обычно на клетку высших растений приходится в среднем 10-30 хлоропластов. Встречаются клетки с огромным количеством хлоропластов. Например, в гигантских клетках палисадной ткани махорки обнаружено около 1000 хлоропластов.
Хлоропласты представляют собой структуры, ограниченные двумя мембранами – внутренней и внешней. Внешняя мембрана, как и внутренняя, имеет толщину около 7 мкм, они отделены друг от друга межмембранным пространством около 20-30 нм. Внутренняя мембрана хлоропластов отделяет строму пластиды, аналогичную матриксу митохондрий. В строме зрелого хлоропласта высших растений видны два типа внутренних мембран. Это – мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.
Ламеллы стромы (толщиной около 20 мкм) представляют собой плоские полые мешки или же имеют вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно друг другу и не образуют связей между собой.
Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30 нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами (рис. 227). Число тилакоидов на одну грану очень варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2 нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом, как бы связывают между собой отдельные граны хлоропласта. Однако полости камер тилакоидов всезда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы. Ламеллы стромы и мембраны тилакоидов образуются путем отделения от внутренней мембраны при начальных этапах развития пластид.
В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.
Функции хлоропластов
Хлоропласты – это структуры, в которых происходят фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров.
Характерным для хлоропластов является наличие в них пигментов, хлорофиллов, которые и придают окраску зеленым растениям. При помощи хлорофилла зеленые растения поглощают энергию солнечного света и превращают ее в химическую. Поглощение света с определенной длиной волны приводит к изменению в структуре молекулы хлорофилла, она переходит при этом в возбужденное, активированное состояние. Освобождающаяся энергия активированного хлорофилла через ряд промежуточных этапов передается определенным синтетическим процессам, приводящим к синтезу АТФ и к восстановлению акцептора электронов НАДФ (никотинамидадениндинуклеотид) до НАДФ-Н, которые тратятся на реакции связывания СО2 и синтез сахаров.
Суммарная реакция фотосинтеза может быть выражена следующим образом:
nСО2 + nН2О свет (СН2О) n + nО2 (I)
хлорофилл
Таким образом, главный итоговый процесс здесь – связывание двуокиси углерода с использование воды для образования различных углеводов и выделение кислорода. Молекулы кислорода, который выделяется в процессе фотосинтеза у растений, образуется за счет гидролиза молекулы воды. Следовательно, процесс фотосинтеза включает в себя процесс гидролиза воды, которая служит одним из источников электронов или атомов водорода. Биохимические исследования показали, что процесс фотосинтеза представляет собой сложную цепь событий, заключающую в себе две фазы: световую и темновую. Первая, протекающая только на свету, связана с поглощением света хлорофиллами и с проведением фотохимической реакции (реакция Хилла). Во второй фазе, которая может идти в темноте, происходит фиксация и восстановление СО2 , приводящие к синтезу углеводов.
В результате световой фазы происходит фотофосфорилирование, синтез АТФ из АДФ и фосфата с использованием цепи переноса электронов, а также восстановление кофермента НАДФ (никотинамидадениндинуклеотидфосфат) в НАДФ-Н, происходящего при гидролизе и ионизации воды. В этой фазе фотосинтеза энергия солнечного света возбуждает электроны в молекулах хлорофилла, которые расположены в мембранах тилакоидов. Эти возбужденные электроны переносятся по компонентам окислительной цепи в тилакоидной мембране, подобно тому как электроны транспортируются по дыхательной цепи в мембране митохондрий. Энергия, освобождающаяся при таком переносе электронов, используется для перекачивания протонов через тилакоидную мембрану внутрь тилакоидов, что приводит к возрастанию разности потенциалов между стромой и пространством внутри тилакоида. Также как и в мембранах крист митохондрий в мембранах тилакоидов встроены молекулярные комплексы АТФ-синтетазы, которые начинают затем транспортировать протоны обратно в матрикс хлоропласта, или строму, и параллельно этому фосфорилировать АДФ, т.е. синтезировать АТФ (рис. 228, 229).