Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология (1120992), страница 29
Текст из файла (страница 29)
Рост мембран происходит за счет встраивания готовых мембранных пузырьков
После деления клеток происходит увеличение объемов растущих дочерних клеток и тем самым рост клеточной поверхности, увеличение площади плазматической мембраны. Но это не единственный пример быстрого роста объема и поверхности. Поверхность быстро растущих клеток в тычиночных нитях злаков может за 1 ч увеличиться в 65 раз, т.е. каждую минуту плазмолемма нарастает на ее первоначальную величину. Такую большую скорость роста плазматической мембраны можно объяснить только тем, что происходит быстрое встраивание, интеркаляция, пузырьков в растущую плазматическую мембрану. Здесь, внутриклеточные мембранные пузырьки подходят к внутренней стороне плазматической мембраны (возможно, их подгоняют к себе микрофиламенты кортикального слоя), происходит слияние мембран и тем самым увеличение поверхности плазматической мембраны (рис. 126).
Откуда же берутся эти готовые блоки, мембранные пузырьки? Удалось проследить (см. ниже), что первичный генезис мембран происходит в гранулярном эндоплазматическом ретикулуме, который является источником всех клеточных мембран, кроме мембран митохондрий и пластид. От мембран гранулярного ЭПР отщепляются мелкие вакуоли, которые сливаются с мембранами аппарата Гольджи, от которого в свою очередь, отщепляются мелкие мембранные вакуоли, сливающиеся или с лизосомами, или с плазматической мембраной, или с секреторными вакуолями.
Таким образом, наблюдается последовательный каскад переходов одних мембран в другие. Первичные же мембранные вакуоли строятся за счет синтеза белка и липидов на мембранах гранулярного ЭПР.
Рост мембран митохондрий и пластид иного характера. Увеличение площади мембран митохондрий происходит за счет синтеза основной массы белков и липидов в гиалоплазме клетки, вслед за чем эти митохондриальные белки и липиды транспортируются через мембранную оболочку митохондрий и встраиваются в их компоненты.
Глава 13. Плазматическая мембрана
Плазматическая мембрана, или плазмолемма, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, ограничивающая клетку снаружи, что обусловливает ее непосредственную связь с внеклеточной средой, а следовательно, со всеми веществами и стимулами, воздействующими на клетку. Поэтому плазматической мембране принадлежит роль быть барьером, преградой между сложно организованным внутриклеточным содержимым и внешней средой. В этом случае плазмолемма выполняет не только роль механического барьера, но, главное, ограничивает свободный поток низко- и высокомолекулярных веществ в обе стороны через мембрану. Более того, плазмолемма выступает как структура “узнающая”, рецептирующая, различные химические вещества и регулирующая избирательно транспорт этих веществ в клетку и из нее. Другими словами, плазматическая мембрана осуществляет функции, связанные с регулируемым избирательным трансмембранным транспортом веществ и выполняет роль первичного клеточного анализатора. В этом отношении плазмолемму можно считать клеточным органоидом, входящим в вакуолярную систему клетки. Как и другие мембраны этой системы (мембраны лизосом, эндосом, аппарата Гольджи и др.) она возникает и обновляется за счет синтетической активности эндоплазматического ретикулума и имеет сходную композицию. Как ни странно, но плазматическую мембрану можно уподобить мембране внутриклеточной вакуоли, но вывернутой наизнанку: она не окружена гиалоплазмой, а окружает ее.
Барьерно-транспортная роль плазмолеммы
Окружая клетку со всех сторон, плазматическая мембрана выполняет роль механического барьера. Для того, чтобы проколоть ее с помощью микроигл или микропипеток, требуется довольно большое усилие. При давлении на нее микроиглы она сначала сильно прогибается, а лишь затем прорывается. Искусственные липидные мембраны менее устойчивы. Эта механическая устойчивость плазматической мембраны может определяться дополнительными компонентами, такими как гликокаликс и кортикальный слой цитоплазмы (рис. 127).
Гликокаликс представляет собой внешний по отношению к липопротеидной мембране слой, содержащий полисахаридные цепочки мембранных интегральных белков - гликопротеидов. Эти цепочки содержат такие углеводы как манноза, глюкоза, N-ацетилглюкозамин, сиаловая кислота и др. Такие углеводные гетерополимеры образуют ветвящиеся цепочки, между которыми могут располагаться выделенные из клетки гликолипиды и протеогликаны. Слой гликокаликса сильно обводнен, имеет желеподобную консистенцию, что значительно снижает в этой зоне скорость диффузии различных веществ. Здесь же могут “застревать” выделенные клеткой гидролитические ферменты, участвующие во внеклеточном расщеплении полимеров (внеклеточное пищеварение) до мономерных молекул, которые затем транспортируются в цитоплазму через плазматическую мембрану.
В электронном микроскопе, особенно при специальных методах контрастирования полисахаридов, гликокаликс имеет вид рыхлого волокнистого слоя, толщиной 3-4 нм, покрывающего всю поверхность клетки. Особенно хорошо гликокаликс выражен в щеточной каемке клеток всасывающего эпителия кишечника (энтероциты), однако он обнаружен практически у всех животных клеток, но степень его выраженности различна (рис. 128).
Механическая устойчивость плазматической мембраны, кроме того, обеспечивается структурой примыкающего к ней со стороны цитоплазмы кортикального слоя и внутриклеточных фибриллярных структур. Кортикальный (от слова - cortex -кора, кожица) слой цитоплазмы, лежащий в тесном контакте с липопротеидной наружной мембраной, имеет ряд особенностей. Здесь в толщине 0,1-0,5 мкм отсутствуют рибосомы и мембранные пузырьки, но в большом количестве встречаются фибриллярные элементы цитоплазмы - микрофиламенты и часто микротрубочки. Основным фибриллярным компонентом кортикального слоя является сеть актиновых микрофибрилл. Здесь же располагается ряд вспомогательных белков, необходимых для движения участков цитоплазмы (подробнее о скелетно-двигательной системе клеток см. ниже). Роль этих связанных с актином белков очень важна, так как она объясняет их участие в связи, в “заякоревании” интегральных белков плазматической мембраны.
У многих простейших, особенно у инфузорий, плазматическая мембрана принимает участие в образовании пелликулы, жесткого слоя, часто определяющего форму клетки. К плазматической мембране здесь изнутри могут примыкать мембранные мешочки; в этом случае у поверхности клеток имеются три мембранных слоя: собственно плазматическая мембрана и две мембраны пелликулярных альвеол. У инфузории туфельки пелликула образует утолщения, располагающиеся в виде шестиугольников, в центре которых выходят реснички (рис. 129). Жесткость пелликулярных образований может быть связана также с элементами цитоплазмы, подстилающими плазматическую мембрану, с кортикальным слоем. Так, в гребнях пелликулы эвглены вблизи мембраны обнаруживаются кроме мембранных вакуолей параллельные пучки микротрубочек и микрофиламентов. Такая фибриллярная периферическая арматура вместе со складчатой многослойной мембранной периферией создает жесткую структуру пелликулы.
Барьерная роль плазмолеммы заключается также в ограничении свободной диффузии веществ. Модельные опыты на искусственных липидных мембранах показали, что они проницаемы для воды, газов, малых неполярных молекул жирорастворимых веществ, но совершенно не проницаемы для заряженных молекул (ионы) и для крупных незаряженных (сахара) (рис. 130).
Естественные мембраны так же ограничивают скорость проникновения низкомолекулярных соединений в клетку.
Трансмембранныый перенос ионов и низкомоекулярных соединений
Плазматическая мембрана, так же как и другие липопротеидные мембраны клетки, является полупроницаемой. Это значит, что через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы, значительно медленнее проникают сквозь мембрану ионы (примерно в 104 раз медленнее). Поэтому если клетку, например эритроцит, поместить в среду, где концентрация солей будет ниже, чем в клетке (гипотония), то вода снаружи устремится внутрь клетки, что приведет к увеличению объема клетки и к разрыву плазматической мембраны (“гипотонический шок”). Наоборот, при помещении эритроцита в растворы солей более высокой концентрации, чем в клетке, произойдет выход воды из клетки во внешнюю среду. Клетка при этом сморщится, уменьшится в объеме.
Такой пассивный транспорт воды из клетки и в клетку все же идет с низкой скоростью. Скорость проникновения воды через мембрану составляет около 10-4 см/с, что в 100 000раз меньше скорости диффузии молекул воды через водный слой толщиной 7,5 нм. Было заключено, что в клеточной мембране, в ее липопротеидном слое существуют специальные “поры” для проникновения воды и ионов. Число их не так велико: суммарная площадь при величине отдельной “поры” около 0,3-0,8 нм должна составлять лишь 0,06% всей клеточной поверхности.
В отличие от искусственных бислойных липидных мембран, естественные мембраны, и в первую очередь плазматическая мембрана, все же способны транспортировать ионы и многие мономеры, такие как сахара, аминокислоты и др. Проницаемость для ионов мала, причем скорость прохождения разных ионов неодинакова. Более высокая скорость прохождения для катионов (K+, Na+) и значительно ниже для анионов (Cl-).
Транспорт ионов через плазмалемму проходит за счет участия в этом процессе мембранных транспортных белков - пермеаз. Эти белки могут вести транспорт в одном направлении одного вещества (унипорт) или нескольких веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Так, например, глюкоза может входить в клетки симпортно вместе с ионом Na+.
Транспорт ионов может происходить по градиенту концентрации - пассивно без дополнительной затраты энергии. Так, например, в клетку проникает ион Na+ из внешней среды, где его концентрация выше, чем в цитоплазме. В случае пассивного транспорта некоторые мембранные транспортные белки образуют молекулярные комплексы, каналы, через которые растворенные молекулы проходят через мембрану за счет простой диффузии по градиенту концентрации. Часть этих каналов открыта постоянно, а другая часть может закрываться или открываться в ответ либо на связывание с сигнальными молекулами, либо на изменение внутриклеточной концентрации ионов. В других случаях специальные мембранные белки - переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану (облегченная диффузия) (рис. 131).
Наличие таких белковых транспортных каналов и переносчиков казалось бы должно приводить к уравновешиванию концентраций ионов и низкомолекулярных веществ по обе стороны мембраны. На самом же деле это не так: концентрация ионов в цитоплазме клеток резко отличается не только от таковой во внешней среде, но даже от плазмы крови, омывающей клетки в организме животных. На табл. 14 показаны концентрации ионов внутри и снаружи клетки.
Таблица 14.
Ион | Внутриклеточная концентрация, мМ | Внеклеточная концентрация, мМ |
Na+ | 5-15 | 145 |
K+ | 140 | 5 |
Mg2+ | 30 | 1-2 |
*Ca2+ | 1-2 | 2,5-5 |
Cl- | 4 | 110 |
*Концентрация Ca2+ в свободном состоянии в цитозоле эукариотических клеток составляет 10-7 М, а снаружи 10-3 М.
Как видно, в этом случае, суммарная концентрация одновалентных катионов как внутри клеток, так и снаружи практически одинаковы (150 мМ), изотонична. Но оказывается в цитоплазме концентрация K+ почти в 50 раз выше, а Na+ ниже, чем в плазме крови. Причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до +20С, и через некоторое время концентрация K+ и Na+ по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Это явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип работы носит название активного транспорта, и он осуществляется с помощью белковых ионных насосов. В плазматической мембране находится двухсубъединичная молекула (K+ + Na+)-насоса, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл 3 иона Na+ и закачивает в клетку 2 иона K+ против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na+ переносится через мембрану из клетки, а K+ получает возможность связаться с белковой молекулой и затем переносится в клетку (рис. 132). В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Mg2+ и Ca2+, также с затратой АТФ.
Такая постоянная работа пермеаз и насосов создает в клетке постоянную концентрацию ионов и низкомолекулярных веществ, создает т.н. гомеостаз, постоянство концентраций осмотически активных веществ. Надо отметить, что примерно 80% всей АТФ клетки тратится на поддержание гомеостаза.