Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология (1120992), страница 23
Текст из файла (страница 23)
Но с другой стороны существуют факты, указывающие на перманентное, постоянное присутствие ядрышковых компонентов течение всего клеточного цикла. Это относится к Ag-фильному материалу ядрышек в первую очередь.
Цитологи начала ХХ века часто наблюдали во время митоза появление какого-то нехроматинового материала, окружающего каждую хромосому. Этот материал или «матрикс» митотических хромосом, как считали, мог иметь ядрышковое происхождение и его роль могла заключаться в том, что он может служить источником новых ядрышек в дочерних ядрах после митоза.
Электронная микроскопия показала, что «матрикс» – нехроматиновый компонент митотических хромосом, состоящий из скопления рыхло расположенных фибрилл и гранул, имеющих рибонуклеопротеидную природу, морфологически сходных с компонентами, входящими в состав интерфазных ядрышек, выявляется в условиях конденсации митотических хромосом как растительного, так и животного происхождения. При этом некоторые компоненты ядрышек диссоциируют и уходят в цитоплазму (большая часть РНП-частиц), в то время как другие тесно связываются с поверхностью хромосом, образуя основу «матрикса» или, как этот компонент теперь называют, основу периферического хромосомного материала (ПХМ) (рис. 93). Этот фибриллярно-гранулярный материал, синтезированный до митоза, переносится хромосомами в дочерние клетки. В ранней телофазе еще в отсутствие синтеза РНК по мере деконденсации хромосом происходит структурное перераспределение компонентов ПХМ. Его фибриллярные компоненты начинают собираться в мелкие ассоциаты – предъядрышки, которые могут сливаться друг с другом, собираться в зоне ядрышкового организатора хромосом в поздней телофазе, где возобновляется транскрипция рРНК.
Новый этап в изучении периферического материала митотических хромосом связан с использованием иммуноцитохимических методов выявления ядрышковых белков. Было показано, что митотические хромосомы действительно участвуют в переносе в дочерние клетки белков ядрышек, белков ядерного остова, так и различных РНП. Так было установлено, что ядрышковые белки, участвующие в транскрипции рРНК (РНК-полимераза I, топоизомераза I, фактор инициации транскрипции UBFи др.), аккумулируются в зоне ядрышкового организатора, в то время как белки, связанные с процессингом пре=рРНК (фибрилларин, нуклеолин, В-23), а также некоторая часть пре-рРНК и малые ядрышковые РНП переносятся поверхностью хромосом в составе периферического хромосомного материала (рис. 94).
Кроме того в состав ПХМ могут входить некоторые негистоновые белки из состава ядерного интерфазного остова (рис.95).
Следовательно митотические хромосомы участвуют не только в их главной функции – перенос генетического материала в виде ДНК – но, кроме того, участвуют в переносе целого ряда белков и РНК (рис. 96).
Биологический смысл появления ПХМ на поверхности митотических хромосом может заключаться в том, что переносимые хромосомами белки не являются случайными «пассажирами», а представляют собой комплекс белков разного происхождения: ферменты и факторы ядрышковой транскрипции, процессинга рРНК, сборки рибосом, незрелые предшественники рибосом и, кроме того, белки ядерного и ядрышкового матрикса, также содержащие малые ядерные РНП и все компоненты, связанные с образованием нерибосомных РНК, с их сплайсингом и др. Другими словами, ПХМ переносит в новые ядра многие белковые компоненты и ферменты, что создает условия, необходимые для форсированного возобновления синтеза и созревания как рибосом, так и синтеза информационных РНК. Митотическая хромосома переносит в новое ядро не только генетическую информацию в виде ДНК хроматина, но и необходимые компоненты синтетического аппарата, готового к активации транскрипции в новом клеточном цикле. Хромосома при клеточном делении»все свое несет с собой» – как гласит латинская поговорка.
Глава 9. Нерибосомные продукты клеточного ядра
Транскрипция нерибосмных генов
Информационные РНК образуются при участии РНК-полимеразы II,
начинающей синтез со стартовой точки транскрипционной единицы, и кончая его в точке терминации. При этом образуется одна молекула РНК, транскрипт – предшественник информационной РНК. Размер транскрипционных единиц разных генов может значительно варьировать от 6 тыс. до 200 тыс. нуклеотидов. Поэтому суммарная фракция РНК, синтезированная на разных генах содержит молекулы различной длины. Эта первично синтезированная РНК или т.н. гетерогенная ядерная РНК (гяРНК), встречается только в ядре и не обнаруживается в цитоплазме. В цитоплазму попадает уже информационная РНК, образующаяся в результате изменений в ядре первичных транскриптов РНК (гяРНК).
Величина гяРНК в несколько раз больше той, которая требуется для синтеза белков: для синтеза «среднего белка», состоящего из 400 аминокислот, необходима матричная РНК в 1200 нуклеотидов. На самом деле величины информационных РНК в составе синтезирующих белок полисом в несколько раз короче первичных транскриптов. Это укорочение является результатом «созревания» гяРНК, процессинга, но иного характера, чем процессинг рибосомных РНК. Структура гена эукариотов оказалась состоящей из чередующихся последовательностей нуклеотидов, т.н. экзонов и интронов. Экзоны – участки ДНК, которые обладают кодирующей информацией и входят в состав информационных РНК, а интроны содержат последовательности, не входящие в информационную РНК. Первичный транскрипт РНК содержит полную копию гена, включает в себя все последовательности и экзоны и интроны. Интроны впоследствии вырезаются из первичного транскрипта, концы же фрагментов РНК сшиваются ковалентно, что приводит к общему укорачиванию образовавшейся молекулы информационной РНК. Этот процесс получил название сплайсинга. Так как большинство генов млекопитающих содержит большее число интронов, чем экзонов, процесс сплайсинга РНК приводит к тому, что очень длинные молекулы гяРНК (первичных транскриптов, содержащих более чем 50 000 нуклеотидов) укорачиваются до длины цитоплазматических иРНК (обычно от 500 до 3000 нуклеотидов длиной) (рис. 97).
По мере синтеза и роста гяРНК, она связывается с рядом ядерных белков, образуя гяРНП-частицы (гетерогенные ядерные рибонуклеопротеиновые частицы). При этом высокомолекулярная гяРНК в ядрах наматывается на глобулярные белковые частицы, информоферы. На каждый информафер приходится отрезок РНК длиной около 500-600 нуклеотидов. Такой комплекс информофера и РНК образует мономер или 30S частицу. В состав каждого информофера входит более 30 белковых молекул информатина. Таким образом первичный транскрипт структурного гена, отвечающего за образование информационной РНК, представляет собой гигантскую молекулу гяРНК, связанную со множеством белковых частиц, информофер. Считается, что участки гяРНК, между информоферами, могут быть использованы для сплайсинга с помощью специальных белковых комплексов – сплайсосом. В состав сплайсосом входит 5-7 малых ядерных рибонуклеопротеидов (snRNP).Эти особые малые ядерные РНП (мяРНП) представляют собой РНП-частицы (U1, U2, U5, U4, U6 snRNP) с константой седиментации около 10S. В каждой частице содержится одна малая молекула РНК (90-400 нуклеотидов) и около семи молекул белка. Так что сплайсосома представляет собой крупный рибонуклеопротеидный комплекс величиной, сравнимой с рибосомой (константа седиментации около 60S).
При синтезе гяРНК и после него сплайсосомы связываются с цепью РНК в местах на границе между экзонами и интронами, специфически узнавая эти места, производят разрыв в основании петлиинтрона, сшивают свободные концы (рис. 98). Таким способом участки интронных последовательностей вычленяются из состава первичного транскрипта, а затем быстро деградируют в ядре. В результате этого процесса длина результирующей молекулы РНК может укорачиваться в несколько раз. Так, например, размер гена белка тироглобулина включает 300 тыс. нуклеотитов, размер же иРНК для этого белка составляет всего 8,7 тыс. нуклеотидов из-за того, что в составе гена включены 36 интронных последовательностей, т.е. происходит укорочение молекул РНК более чем в 30 раз. Размер гена каталазы равен 34 т.п.н., а размер иРНК – 1,6 т.п.н. Величина овальбуминового гена у птиц составляет 7,5 т.п.н., а соответствующая этому гену зрелая иРНК – всего 1,8 т.п.н. Обычно иРНК в 2,5-10 раз короче первичного транскрипта, гяРНК.
Считается, что после созревания иРНК, при переходе ее из ядра в цитоплазму теряет белки, входящие в состав информофера, «переодевается» в ядерной поре, а белки информофер остаются в ядре. В цитоплазме иРНК снова одеваются новыми белками,образуя «информосомы » – форму хранения иРНК в неактивном состоянии, или связываются с белками, необходимыми для трансляции.
Морфология РНП-компонентов в ядре
Вся информация, полученная о морфологии транскриптов рРНК и иРНК, об информоферах и сплайсосомах получена на изучении выделенных из ядер этих компонентов, подвергнутых специальной обработке для распластывания их на препаратах для электронной микроскопии.
Что же касается морфологии РНП-продуктов in situ, в объеме интактных ядер, то здесь информация неполная и противоречивая.
Кроме хорошо выраженного ядрышка, другие продукты ядерной активности при изучении клеток на ультратонких срезах не бросаются в глаза: их трудно отличить от различных фибрилл (ДНП, матрикс)и каких-то гранул, казалось бы без особого порядка разбросанных в ядре. Все же, используя метод избирательного контрастирования солями урана структур, содержащих РНК, удается выделить ряд компонентов, которые можно отнести к неядрышковым продуктам транскрипции. Это – перихроматиновые фибриллы, перихроматиновые гранулы и интерхроматиновые гранулы (рис. 99б, 100).
Перихроматиновые фибриллы обнаруживаются по периферии участков конденсированного хроматина (околомембранного или любого другого). Они имеют толщину около 3-5 нм, часто образуют рыхлую неправильную сеть. Оказалось, что этот компонент ядра сильно изменяется при стимуляции синтеза РНК. Так, при возрастании синтеза РНК в клетках печени крыс после голодания и последующего питания или после введения кортизона адреналэктомированным животным зоны перихроматиновых фибрилл значительно увеличиваются. Эти зоны оказались наиболее активными по включению меченых предшественников в РНК, что было показано радиоавтографически с помощью электронного микроскопа. Такие фибриллы могут представлять новосинтезированную гяРНК.
Другой тип РНК-содержащих структур интерфазного ядра - перихроматиновые гранулы. Они имеют диаметр около 45 нм и окружены светлым ореолом. Эти гранулы встречаются только на периферии конденсированного хроматина, в диффузном хроматине их нет. Считается, что между этими гранулами и перихроматированными фибриллами существует структурная связь. При больших увеличениях внутри гранул можно видеть тонкие извитые фибриллы 3-5 нм толщиной.
Крупные гранулы типа перихроматиновых встречаются в специфических активных в отношении синтеза РНК участках политенных хромосом, в пуффах (см. ниже). Сходные гранулы обнаружены в боковых петлях функционирующих мейотических хромосом. Исходя из этого, некоторые исследователи делают предположение, что такие рибонуклеопротеидные гранулы могут представлять собой зрелые комплексы из нескольких информофер, рибонуклеопротеидные частицы, содержащие информационную РНК. Однако это предположение нуждается в проверке.
Интерхроматиновые гранулы - третий тип РНК-содержащих структур. Они имеют размер 20-25 нм и группируются всегда в форме скоплений между участками хроматина. Эти гранулы не стандартны по величине и переплетены тонкими фибриллами.
В последнее время были получены антитела к мяРНП. Оказалось, что среди них есть и различные сплайсосомы, гранулы размером 20-30 нм. Эти мяРНП располагались в зонах свободных от конденсированного хроматина и по своей локализации совпадали с зонами, где располагались скопления интерхроматиновых гранул. Они могут представлять собой скопление сплайсосом, участвующих в конечных стадиях созревания гяРНК.
В таком случае всю картину динамики синтеза гяРНК можно представить себе следующим образом. Деконденсирующиеся участки хроматина (эухроматин) по периферии конденсированных зон хроматина, связываясь с РНК-полимеразой II, транскрибируют гяРНК в виде начальных перихроматированных фибрилл, связывающихся с белками информофер, которые затем подвергаясь созреванию с участием сплайсосом (интерхроматиновые гранулы), дают начало зрелым формам иРНК - комплексам информофер, или перихроматиновым гранулам. Вероятно, не все зрелые иРНК могут переходить в крупные (45-60 нм) перихроматиновые гранулы, а последние, вероятно, характерны для РНК с высоким молекулярным весом.
Иную топографию в интерфазных ядрах имеют РНП-продукты растительных клеток. Так, в ядрах с хромонемной организацией интерфазного хроматина, РНП в виде крупных гранул (20-30 нм) и тонких фибрилл (6-8 нм) располагается по периферии такого конденсированного хроматина и в межхроматиновых зонах; создается впечатление, что вся периферия хромонемных участков хроматина вовлечена в синтез РНК (рис. 100б).