Лекции в ворде (1115146), страница 16
Текст из файла (страница 16)
Решения этих проблем мы и будем рассматривать.
Проблема именования решается за счет ассоциирования с каждым ресурсом некоторого ключа. В общем случае это целочисленное значение. То есть при создании разделяемого ресурса его автор приписывает ему номер и определяет права доступа к этому ресурсу. После этого любой процесс, который укажет системе, что он хочет общаться с разделяемым ресурсом с ключом N, и обладает необходимыми правами доступа, будет допущен для работы с этим ресурсом.
Однако такое решение не является идеальным, так как вполне возможна коллизия номеров - когда совпадают номера разделяемых ресурсов. В этом случае процессы будут путаться, что неизбежно приведет к ошибкам. Поэтому в системе предусмотрено стандартное средство генерации уникальных ключей. Для генерации уникального ключа используется функция ftok
#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok(char *s, char c);
Суть ее действия - по текстовой строке и символу генерируется уникальное для каждой такой пары значение ключа. После этого сгенерированным ключом можно пользоваться как для создания ресурса, так и для подтверждения использования ресурса. Более того, для исключения коллизий, рекомендуется указывать в качестве параметра "указателя на строку" путь к некоторому своему файлу. Второй аргумент - символьный, который позволяет создавать некоторые варианты ключа, связанного с этим именем, этот аргумент называется проектом (project). При таком подходе можно добиться отсутствия коллизий.
Давайте посмотрим конкретные средства работы с разделяемыми ресурсами.
Разделяемая память.
Общая схема работы с разделяемыми ресурсами такова - есть некоторый процесс-автор, создающий ресурс с какими-либо параметрами. При создании ресурса разделяемой памяти задаются три параметра - ключ, права доступа и размер области памяти. После создания ресурса к нему могут быть подключены процессы, желающие работать с этой памятью. Соответственно, имеется действие подключения к ресурсу с помощью ключа, который генерируется по тем же правилам, что и ключ для создания ресурса. Понятно, что здесь имеется момент некоторой рассинхронизации, который связан с тем, что потребитель разделяемого ресурса (процесс, который будет работать с ресурсом, но не является его автором) может быть запущен и начать подключаться до запуска автора ресурса. В этой ситуации особого криминала нету, так как имеются функции управления доступом к разделяемому ресурсу, с использованием которых можно установить некоторые опции, определяющие правила работы функций, взаимодействующих с разделяемыми ресурсами. В частности, существует опция, заставляющая процесс дождаться появления ресурса. Это также, может быть, не очень хорошо, например, автор может так и не появиться, но другого выхода нету, это есть некоторые накладные расходы. Вот в общих словах - что есть что.
Давайте рассмотрим те функции, которые предоставляются нам для работы с разделяемыми ресурсами.
Первая функция - создание общей памяти.
int shmget (key_t key, int size, int shmemflg);
key - ключ разделяемой памяти
size - размер раздела памяти, который должен быть создан
shmemflg - флаги
Данная функция возвращает идентификатор ресурса, который ассоциируется с созданным по данному запросу разделяемым ресурсом. То есть в рамках процесса по аналогии с файловыми дескрипторами каждому разделяемому ресурсу определяется его идентификатор. Надо разделять ключ - это общесистемный атрибут, и идентификатор, используя который мы работаем с конкретным разделяемым ресурсом в рамках процесса.
С помощью этой функции можно как создать новый разделяемый ресурс “память” (в этом случае во флагах должен быть указан IPC_CREAT)?, а также можно подключиться к существующему разделяемому ресурсу. Кроме того, в возможных флагах может быть указан флаг IPC_EXECL, он позволяет проверить и подключиться к существующему ресурсу - если ресурс существует, то функция подключает к нему процесс и возвращает код идентификатора, если же ресурс не существует, то функция возвращает -1 и соответствующий код в errno.
Следующая функция - доступ к разделяемой памяти:
char *shmat(int shmid, char *shmaddr, int shmflg);
shmid - идентификатор разделяемого ресурса
shmaddr - адрес, с которого мы хотели бы разместить разделяемую память
При этом, если значение shmaddr - адрес, то память будет подключена, начиная с этого адреса, если его значение - нуль, то система сама подберет адрес начала. Также в качестве значений этого аргумента могут быть некоторые предопределенные константы, которые позволяют организовать, в частности выравнивание адреса по странице или началу сегмента памяти.
shmflg - флаги. Они определяют разные режимы доступа, в частности, есть флаг SHM_RDONLY.
Эта функция возвращает указатель на адрес, начиная с которого будет начинаться запрашиваемая разделяемая память. Если происходит ошибка, то возвращается -1.
Хотелось бы немного поговорить о правах доступа. Они реально могут использоваться и корректно работать не всегда. Так как, если аппаратно не поддерживается закрытие области данных на чтение или на запись, то в этом случае могут возникнуть проблемы с реализацией такого рода флагов. Во-первых, они не будут работать, так как мы получаем указатель и начинаем работать с указателем, как с указателем, и общая схема здесь не предусматривает защиты. Второе, можно программно сделать так, чтобы работали флаги, но тогда мы не сможем указывать произвольный адрес, в этом случае система будет подставлять и возвращать в качестве адрес разделенной памяти некоторые свои адреса, обращение к которым будет создавать заведомо ошибочную ситуацию, возникнет прерывание процесса, во время которого система посмотрит - кто и почему был инициатором некорректного обращения к памяти, и если тот процесс имеет нужные права доступа - система подставит нужные адреса, иначе доступ для процесса будет заблокирован. Это похоже на установку контрольной точки в программе при отладке, когда создавалась заведомо ошибочная ситуация для того, чтобы можно было прервать процесс и оценить его состояние.
Третья функция - открепление разделяемой памяти:
int shmdt(char *shmaddr);
shmaddr - адрес прикрепленной к процессу памяти, который был получен при подключении памяти в начале работы.
Четвертая функция - управление разделяемой памятью:
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
shmid - идентификатор разделяемой памяти
cmd - команда управления.
В частности, могут быть команды: IPC_SET (сменить права доступа и владельца ресурса - для этого надо иметь идентификатор автора данного ресурса или суперпользователя), IPC_STAT (запросить состояние ресурса - в этом случае заполняется информация в структуру, указатель на которую передается третьим параметром, IPC_RMID (уничтожение ресурса - после того, как автор создал процесс - с ним работают процессы, которые подключаются и отключаются, но не уничтожают ресурс, а с помощью данной команды мы уничтожаем ресурс в системе).
Это все, что касается функций управления разделяемой памятью.
Передача сообщений.
-
очередь рассматривается, как одна единственная сквозная очередь, порядок сообщений в которой определяется хронологией их попадания в эту очередь.
-
кроме того, так как каждое сообщение имеет тип (на схеме - буква рядом с номером сообщения), то эту очередь можно рассматривать, как суперпозицию очередей, связанную с сообщениями одного типа.
Система IPC позволяет создавать разделяемый ресурс, называемый “очередь сообщений” - таких очередей может быть произвольное количество. По аналогии с разделяемой памятью - мы можем создать очередь, подключиться к ней, послать сообщение, принять сообщение, уничтожить очередь и т.д. Рассмотрим функции работы с очередями сообщений:
Создание очереди сообщений:
int msgget(key_t key, int flags);
 çàâèñèìîñòè îò ôëàãîâ ïðè îáðàùåíèè ê äàííîé ôóíêöèè ëèáî ñîçäàåòñÿ ðàçäåëÿåìûé ðåñóðñ, ëèáî îñóùåñòâëÿåòñÿ ïîäêëþ÷åíèå ê уже ñóùåñòâóþùåìó.
Отправка сообщения:
int msgsnd( int id, struct msgbuf *buf, int size, int flags);
id - идентификатор очереди сообщения;
struct msgbuf {
long type; /* тип сообщения */
char mtext[s] /* указатель на тело сообщения */
}
size - размер сообщения, здесь указывается размер сообщения, размещенного по указателю buf;
flags - флаги, в частности, флагом может быть константа IPC_NOWAIT. При наличии такого флага будут следующие действия - возможна ситуация, когда буфера, предусмотренные системой под очередь сообщений, переполнены. В этом случае возможны два варианта - процесс будет ожидать освобождения пространства, если не указано IPC_NOWAIT, либо функция вернет -1 (с соответствующим кодом в errno), если было указано IPC_NOWAIT.
Прием сообщения:
int msgrcv( int id, struct msgbuf *buf, int size, long type, int flags);
id - идентификатор очереди;
buf - указатель на буфер, куда будет принято сообщение;
size - размер буфера, в котором будет размещено тело сообщения;
type - если тип равен нулю, то будет принято первое сообщение из сквозной очереди, если тип больше нуля, то в этом случае будет принято первое сообщение из очереди сообщений, связанной с типом, равным значению этого параметра.
flags - флаги, в частности, IPC_NOWAIT, он обеспечит работу запроса без ожидания прихода сообщения, если такого сообщения в момент обращения функции к ресурсу не было, иначе процесс будет ждать.
Управление очередью:
int msgctl( int id, int cmd, struct msgid_dl *buf);
id - идентификатор очереди;
cmd - команда управления, для нас интерес представляет IPC_RMID, которая уничтожит ресурс.
buf - этот параметр будет оставлен без комментария.
Мы описали два средства взаимодействия между процессами. Что же мы увидели? Понятно, что названия и описания интерфейсов мало понятны. Прежде всего следует заметить то, что как только мы переходим к вопросу взаимодействия процессов, у нас возникает проблема синхронизации. И здесь мы уже видим проблемы, связанные с тем, что после того, как мы поработали с разделяемой памятью или очередью сообщений, в системе может оставаться “хлам”, например, процессы, которые ожидают сообщений, которые в свою очередь не были посланы. Так, если мы обратились к функции получения сообщений с типом, которое вообще не пришло, и если не стоит ключ IPC_NOWAIT, то процесс будет ждать его появления, пока не исчезнет ресурс. Или мы можем забыть уничтожить ресурс (и система никого не поправит) - этот ресурс останется в виде загрязняющего элемента системы.
Когда человек начинает работать с подобными средствами, то он берет на себя ответственность за все последствия, которые могут возникнуть. Это первый набор проблем - системная синхронизация и аккуратность. Вторая проблема - синхронизация данных, когда приемник и передатчик работают синхронно. Заметим, что самый плохой по синхронизации ресурс из рассмотренных нами - разделяемая память. Это означает, что корректная работа с разделяемой памятью не может осуществляться без использования средств синхронизации, и, в частности, некоторым элементом синхронизации может быть очередь сообщений. Например, мы можем записать в память данные и послать сообщение приемнику, что информация поступила в ресурс, после чего приемник, получив сообщение, начинает считывать данные. Также в качестве синхронизирующего средства могут применяться сигналы.
И это главное - не язык интерфейсов, а проблемы, которые могут возникнуть при взаимодействии параллельных процессов.
Лекция №18
К сегодняшнему дню мы разобрали два механизма взаимодействия процессов в системе IPC - это механизм общей (или разделяемой) памяти и механизм сообщений. Мы с вами выяснили, что одной из основных проблем, возникающей при взаимодействии процессов, является проблема синхронизации. Ярким примером механизма, для которого эта проблема является наиболее острой, является механизм взаимодействия процессов с использованием разделяемой памяти.
Вы помните, что механизм разделяемой памяти позволяет создавать объект, который становится доступным всем процессам, подтвердившим ключ доступа к этому объекту, а также имеют соответствующие права. После этого общая память становится, с точки зрения каждого из этих процессов, как бы фрагментом адресного пространства каждого из них, к которому этот процесс может добираться через указатель этого адресного пространства. С другой стороны нет никаких средств, которые позволили бы синхронизовать чтение и запись в эту область данных. Так как в эту область данных одновременно имеет доступ произвольное количество процессов, то проблема синхронизации здесь имеет место быть.
Возможна ситуация, когда один из процессов начал запись в разделяемую память, но еще не закончил, но другой процесс не дождался завершения записи, считал и начал пользоваться этой информацией. В этом случае возможны коллизии. Т.е. без синхронизации использовать механизм разделяемой памяти невозможно.
Следующий механизм, который мы с вами рассмотрели - очередь сообщений. Имеется возможность совместной работы с разделяемым объектом, который называется очередь сообщений. Имеется сообщение, которое состоит из некоторого спецификатора типа, и некоторого набора данных. Процесс, подтвердив ключ и имея права доступа к этому разделяемому ресурсу, может осуществлять действия по записи сообщений в очередь, и по чтению сообщений из очереди.
Порядок чтения и записи сообщений из очереди соответствует названию этой структуры - очередь. Кроме того, за счет того, что каждое сообщение типизировано, есть возможность рассмотрения этой очереди с нескольких точек зрения. Первая точка зрения - это одна очередь и порядок в ней хронологический. Вторая точка зрения - это возможность представление этой очереди в виде нескольких очередей, каждая из которых содержит элементы определенного типа.
Понятно, что механизм сообщений может выступать в двух ролях: как средство передача данных, и как средство синхронизации (понятно каким образом).
Итак, к сегодняшнему дню мы познакомились с двумя этими механизмами. Напомню, как только мы переходим к работе от однопроцессной задачи к задаче многопроцессной, у нас сразу же возникают проблемы, связанные с тем, что любой параллелизм накладывает определенную ответственность на программу. Это ответственность по синхронизации доступа к разделяемой памяти, ответственность за правильность подпрограммы, занимающейся приемом и передачей сообщений и т.д. Можно, например, ошибиться в механизме передачи и приема сообщений за счет того, что какой-то процесс будет бесконечно долго ожидать несуществующее сообщение, то, которое никогда в очереди не появится, и система вам никогда такую ошибку не зафиксирует. Т.е. возможны зависания процессов, могут образоваться неосвобожденные ресурсы ("мусор"), и это приводит к деградации системы.