курсач (1113599), страница 2
Текст из файла (страница 2)
Изучение оптической абсорбции показало, что максимум окраски наблюдается при отношении компонентов, отвечающем составу предельной насыщенной молбдокремнивой кислоты.
При температуре около 70С происходит распад молибдокремниевой кислоты на ингредиенты. Кристаллическая молибдокремниевая кислота неустойчива, при хранении частично разлагается [4].
Таблица 1
Растворимость молибдокремниевой кислоты:
Температура, С | Растворимость, % | Содержание воды в твердой фазе, моль |
23,7 | 66,80 | 21,3 |
40,0 | 69,60 | 18,8 |
50,0 | 71,23 | 18,0 |
60,0 | 72,77 | 17,0 |
Гетерополианионы Кеггина способны обратимо присоединять электроны. Восстановление по-разному сказывается на структуре гетерополикислот [5].
ГПК хорошо растворяются в воде и в кислородсодержащих органических растворителях. Растворимость резко снижается при использовании обезвоженных кислот и тщательно осушенных неводных растворителей. В бензоле, хлороформе, петролейном эфире ГПК не растворяются.
Состояние ГПС в растворе зависит от кислотности среды, состава, концентрации и природы растворителя. Однако в разбавленных растворах следует учитывать возможность деструкции ГПА. Гетерополианионы существуют в умеренно кислых растворах, в сильно кислой среде они подвергаются кислотному гидролизу с образованием оксокатионов металлов. В щелочной среде идет гидролиз с образованием анионов простых кислот соответствующих гетерополиатомов и металлов.
2.1.3. Кислотные свойства гетерополикислот.
В кристаллических гетерополикислотах найдено два типа протонов:
1) нелокализованные гидратированные протоны, связанные с гетерополанионом как единым целым и быстро обменивающиеся молекулами воды с гидратной оболочкой кислоты;
2)гидратированные протоны, локализованные на периферийных атомах кислорода полианиона.
При удалении кристаллизационной воды происходит дегидратация и локализация все протонов. В растворе нет разделения на локализованные и нелокализованные протоны. В водных растворах ГПК являются сильными кислотами, полностью диссоциированными по первым трем ступеням. При этом ступенчатый характер диссоциации незаметен вследствие нивелирующего влияния растворителя.
Неводные растворители оказывают дифференцирующее влияние на диссоциацию кислот. Поразительно слабое влияние состава ГПК на их кислотность тем ни менее подчиняется определенной закономерности, которая более ясно видна в случае полярных растворителей. В малополярных растворителях, например в уксусной кислоте, возможно влияние ассоциации.
Сила кислот падает при восстановлении гетерополикислот. Установлено, что ГПК в растворе практически полностью ионизирована и существует в виде сольватно-разделенных ионных пар [6].
2.1.4. Окислительно-восстановительные свойства.
Многочисленными исследованиями с привлечением различных спектроскопических и, главным образом, электрохимических методов показано влияние на величину формального (стандартный потенциал для данных систем невозможно точно ни измерить, ни рассчитать из констант равновесия либо из термодинамических величин) окислительно-восстановительного потенциала и на свойства продуктов природы центрального атома, лигандов, структуры гетерополианиона.
Как видно из табл. 2, окислительная способность возрастает в ряду центральных атомов Si<Ge<P<As. Соответственно, в этом же ряду идет и уменьшение восстановительных свойств гетерополисиней. Эта закономерность прослеживается для молибденовых, вольфрамовых и смешанных соединений.
-Изомеры восстанавливаются в более отрицательной области потенциалов, чем -изомеры (см. табл. 2).
При использовании различных восстановителей образуются восстановленные формы, отличающиеся по составу, что подтверждается их различающимися спектральными характеристиками (см. табл. 3). Кроме того, существует различие и в обратимости процесса при использовании различных восстановителей. Показано [7], что при использовании таких восстановителей как аскорбиновая кислота, гидразинсульфат, эйкоген имеет место обратимое присоединение электронов. В случае же восстановления солями Sn (II) процесс необратим, что в большинстве источников [7, 8] объясняется нарушением структуры исходного гетерополианиона ввиду образования соединения состава SiMo10Sn.
Обратимость электропревращений гетерополисоединений в органических растворителях увеличивается. Достаточно присутствие 50 об.% диоксана, этанола или ацетона для предотвращения диссоциации и изомеризации в растворах почти всех ГПК, причем присутствие органических растворителей принципиально не сказывается на величине измеряемого потенциала E1/2.
Таблица 2
Полярографические потенциалы полуволн электрохимического восстановления гетерополикислот (на вращающемся платиновом электроде относительно хлорсеребряного) [5]
Кислота | Условия измерения | E1/2 (число электронов) |
-SiMo12 -SiMo12 | 0.5 М HCl, 50% водный раствор | +0.25(2); +0.13(2); -0.06(2) +0.35(2); +0.27(2); -0.13(2) |
-GeMo12 | 0.5 М HCl | +0.36(2); +0.24(2); +0.06(2) +0.50(2); +0.40(2); 0.00(2) |
-PMo12 -PMo12 | 1 M HClO4, 50% раствор диоксана 1 M HClO4 | +0.36(2); +0.22(2); -0.01(2); -0.15(1) |
-AsMo12 | 0.5 М HCl, 50% раствор | +0.36(2); +0.24(2); +0.02(2); -0.13(2); -0.25(2) |
PVMo11 PV2Mo10 | 1 M H2SO4, 50% раствор диоксана | +0.47(2); +0.22(2); +0.12(2); |
-PW12 | 1 M H2SO4 | +0.52(2); -0.04(2); -0.205(2); |
Таблица 3
Положение максимумов поглощения (нм) восстановленных гетерополикислот в водных растворах [7].
Кислота | Восстановитель | , нм |
-SiMo12 | SnCl2, продукт I SnCl2, продукт II SnCl2 | 630 и 720 740 |
-SiMo12 -SiMo12 | Гидразин сернокислый | 790 |
-SiMo12 -SiMo12 | Аскорбиновая кислота | 780 800 |
-PMo12 | SnCl2 Гидразин сернокислый 1-Амино-2-нафтол-4-сульфокислота | 740 |
2.2 Методы определения Cr(VI).
Определение Cr(VI) в природных водах может быть осуществлено методом проточно-инжекционного анализа в диапазоне концентраций от 0,1 до 20 мкг/мл со стандартным отклонением около 1,3% и скоростью по меньшей мере 70 образцов в час [9]. Полученные результаты хорошо согласуются с результатами обычной пламенной атомно-абсорбционной спектрометрии.
Описано определение Cr(VI) с 1.5-дифенилкарбазидом в проточной системе; образующийся в растворе комплекс сорбируют катионитом AG500W-X2 в потоке и измеряют поглощение твердой фазы. Достигнут предел обнаружения 0,1 мкг/л при V=4,5 мл и 0,03 мкг/л при V=14 мл.
Для последовательного определения концентрации Cr(VI) и Crобщ. Использован проточно- инжекционный фотометрический метод. Cr(VI) определяют по реакции с дифенилкарбазидом, а при определении Crобщ. Соединения Cr(III) окисляют в растворе носителя церием (VI). Интервал определяемых концентраций хрома составляет 0,2-10 мг\л, производительность – 40 определений за 1 час [10].
Твердофазная спектрофотометрия применена для определения микроколичеств Cr(VI) в водных растворах и природных водах. При этом Cr(VI) в виде комплекса с ДФК сорбировали на катионите Дауэкс 50WX2 или 50WX4, концентрат отделяли от раствора седиментацией и затем фотометрировали относительно сорбента, взаимодействовавшего с ДФК в отсутствии хрома.
Разработан сорбционно-фотометрический метод определения Cr(VI) с применением пенополиуретанов, модифицированных ДФК. Предел обнаружения равен 3*10-3 мкг/мл при объеме пробы 25 мл. в присутствии тетрафенилбората удается снизить ПО до 4*10-4 мкг/мл.
Предложен [12] новый фотометрический метод определения Cr(VI) с использованием о-нитрофениламмония. Для устранения мешающего влияния Cu, Fe, Al определения проводят в присутствии ЭДТА. Метод более чувствительный, чем известный с использованием дифенилкарбазида.
Для определения Cr(III) и Cr(VI) предложен новый фотометрический реагент 2-(5-бром-2-пиридилазо)-5-диэтиламино-фенол, реагент пригоден для определения суммарного содержания Cr(III) и Cr(VI).
Реагент тиазольный синий предложен для экстракционно-фотометрического определения микроколичеств Cr(VI). Определены оптимальные условия экстракции ионного ассоциата, его состав и молярный коэффициент поглощения. Закон Бера соблюдается в диапазоне 0,04-1,00 мкг/мл Cr(VI).
Для определения Cr(VI) в почвах и растениях предложен метод, основанныйна экстракции ионного ассоциата Cr(VI) с родамином С состава 1:1 хлороформом из 0.25М H2SO4. Градуировочный график линеен в интервале 0.4-0.5 мкг/мл. Определению 2 мкг хрома не мешает большие количества Ca, Ni, Mg, Pb, Ce(IV), Ce(III). Мешают – Ga, Sn, Fe.
2.2 Методы определения NO3- [14]
Для качественного определения присутствия нитратов в природных водоемах может быть использована реакция бруцина в сильнокислой среде. Появление желтого или коричнево-красного окрашивания свидетельствует о присутствии нитратов. Предел обнаружения реакции 1 мг/л и более. Эту же реакцию используют для спектрофотометрического определения нитратов для области 400-410 нм. Наилучшие результаты получаются в диапазоне также 1-4 мг/л, когда кривая поглощение-концентрация NO3- близка к линейной.
Также описано определение нитратов фотометрическим способом по реакции с салицилатом натрия в концентрированной трихлоруксусной кислоте, которая идет с образованием соли нитросалициловой кислоты, окрашенной в желтый цвет. Интенсивность окраски прямо пропорциональна концентрации нитратов. Предел обнаружения 0,1 мг/л.
Предложено спектрофотометрическое определение нитрата при 400 нм по реакции с хромотроповой кислотой для концентраций NO3- ≤ 6 мкг/мл.
В качестве реагентов, образующих окрашенные продукты окисления при взаимодействии с нитратом, используют дифениламин, дифениламинсульфоновую кислоту, дуфенилбензидин и восстановленный стрихнин.
Сульфат стрихнина восстанавливают в растворе HCl. При оптимальных условиях образуется розовая окраска с NO3- - ионами. Чувствительность 0,02 мкг/мл. Хлориды не мешают, но мешают другие окисляющие агенты. В случае предварительного ионообменного концентрирования NO3- чувствительность повышается.