Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045), страница 43
Текст из файла (страница 43)
Å. Òûðòûøíèêîâ30.6201Òðåóãîëüíàÿ ôîðìà ìàòðèöûËåììà 1. Äëÿ ëþáîé ìàòðèöû A ∈ Cn×n cóùåñòâóåò èíâàðèàíòíîå ïðîñòðàíñòâîðàçìåðíîñòè n − 1.Äîêàçàòåëüñòâî. Ìû óæå çíàåì, ÷òî îáðàç imA ÿâëÿåòñÿ èíâàðèàíòíûì ïðîñòðàíñò-âîì. Åñëè åãî ðàçìåðíîñòü ðàâíà n − 1, òî âñå äîêàçàíî.Åñëè îíà ðàâíà k < n − 1, òî imA çàâåäîìî ïðèíàäëåæèò êàêîìó-òî áîëåå øèðîêîìóïîäïðîñòðàíñòâó L ðàçìåðíîñòè n − 1, ïðèòîì åñëè x ∈ L, òî Ax ∈ imA ⊂ L.
Çíà÷èò, Lèíâàðèàíòíî îòíîñèòåëüíî A. Åñëè dim imA = n, òî ïåðåéäåì ê ìàòðèöå B = A − λI ,ãäå λ êàêîå-òî ñîáñòâåííîå çíà÷åíèå ìàòðèöû A. ßñíî, ÷òî dim kerB ≥ 1 ⇒dim imB ≤ n − 1 ⇒ B èìååò èíâàðèàíòíîå ïðîñòðàíñòâî ðàçìåðíîñòè n − 1. Îíî æåèíâàðèàíòíî îòíîñèòåëüíî A. 2Ëåììà 2.
Ïóñòü L èíâàðèàíòíî îòíîñèòåëüíî A ∈ Cn×n è dim L = k > 1. Òîãäà â Lèìååòñÿ èíâàðèàíòíîå îòíîñèòåëüíî A ïîäïðîñòðàíñòâî ðàçìåðíîñòè k − 1.Äîêàçàòåëüñòâî. Ñîãëàñíî ìàòðè÷íîìó âûðàæåíèþ èíâàðèàíòíîñòè, AX = XB , ãäåñòîëáöû X îáðàçóþò â L áàçèñ è B ∈ Ck×k . Ïî ëåììå 1, ìàòðèöà B èìååò èíâàðèàíòíîåïðîñòðàíñòâî ðàçìåðíîñòè k − 1. Îáîçíà÷èì åãî ÷åðåç M è ðàññìîòðèì ìíîæåñòâî Nâåêòîðîâ âèäà Xz, z ∈ M . Êîíå÷íî, N ⊂ Cn åñòü ïîäïðîñòðàíñòâî ðàçìåðíîñòè k − 1.Ïðè ýòîì A(Xz) = X(Bz) ⇒ N èíâàðèàíòíî îòíîñèòåëüíî A. 2Ñëåäñòâèå.
Äëÿ ëþáîé ìàòðèöû A ∈ Cn×n ñóùåñòâóåò öåïî÷êà âëîæåííûõ ïîä-ïðîñòðàíñòâL1 ⊂ . . . ⊂ Ln = Cn ,êàæäîå èç êîòîðûõ èíâàðèàíòíî îòíîñèòåëüíî A è ïðèòîì dim Lk = k .Òåîðåìà î âåðõíåé òðåóãîëüíîé ôîðìå. Ëþáàÿ ìàòðèöà A ∈ Cn×n ïîäîáíà âåðõíåéòðåóãîëüíîé ìàòðèöå.Äîêàçàòåëüñòâî. Ïîñòðîèì áàçèñ x1 , . . .
, xn òàêèì îáðàçîì, ÷òî Lk = L(x1 , . . . , xk )(äîñòàòî÷íî âçÿòü x1 ∈ L1 , äîïîëíèòü åãî äî áàçèñà â L2 âåêòîðîì x2 , è òàê äàëåå).Ïóñòü X = [x1 , . . . , xn ]. Òîãäà Axj åñòü ëèíåéíàÿ êîìáèíàöèÿ ñòîëáöîâ x1 , . . . , xj ⇒Axj = Xbj äëÿ ñòîëáöà bj ñ íóëÿìè â ïîçèöèÿõ íèæå j -é. Òàêèì îáðàçîì, ìàòðèöàB = [b1 , . . .
, bn ] âåðõíÿÿ òðåóãîëüíàÿ, è ïðè ýòîì AX = XB ⇒ B = X −1 AX . 2Çàìåòèì, ÷òî åñëè B = X −1 AX , òî B è A èìåþò îäèí è òîò æå õàðàêòåðèñòè÷åñêèéìíîãî÷ëåí. Ïîýòîìó B è A èìåþò îäèí è òîò æå íàáîð n ñîáñòâåííûõ çíà÷åíèé ñ ó÷åòîìêðàòíîñòåé. Åñëè ìàòðèöà B òðåóãîëüíàÿ, òî åå ñîáñòâåííûå çíà÷åíèÿ ñóòü ýëåìåíòûãëàâíîé äèàãîíàëè.Çàäà÷à.nλ + an−1 λÇàäà÷à.= 0, à õàðàêòåðèñòè÷åñêèé ìíîãî÷ëåí ìàòðèöû A çàïèñàí â âèäå det(λI − A) =+ an−2 λ+ ... + a0 . Äîêàçàòü, ÷òî an−1 = 0 è an−2 = −trA2 /2.Ïóñòü trAn−1n−2Êâàäðàòíûå ìàòðèöûAèBïîðÿäêànèìåþò ñîáñòâåííûå çíà÷åíèÿλ1 , . . . , λ nèµ1 , .
. . , µn(ñ ó÷åòîì êðàòíîñòåé). Íàéòè âñå ñîáñòâåííûå çíà÷åíèÿ (ñ ó÷åòîì êðàòíîñòåé) ëèíåéíîãîîïåðàòîðàX 7→ AX + XB , X ∈ Cn×n .30.7Ñïåêòðàëüíûé ðàäèóñÌíîæåñòâî ñîáñòâåííûõ çíà÷åíèé ìàòðèöû ÷àñòî íàçûâàåòñÿ òàêæå åå ñïåêòðîì. Íàèáîëüøèé ìîäóëü ñîáñòâåííûõ çíà÷åíèé ìàòðèöû A íàçûâàåòñÿ åå ñïåêòðàëüíûì ðàäè-202Ëåêöèÿ 30óñîì. Îáîçíà÷åíèå: ρ(A).Óòâåðæäåíèå. Äëÿ ñïåêòðàëüíîãî ðàäèóñà èìååò ìåñòî îöåíêà ρ(A) ≤ ||A||, ãäå || · || ïðîèçâîëüíàÿ ìàòðè÷íàÿ íîðìà.Äîêàçàòåëüñòâî. Ïóñòü Ax = λx, x 6= 0. Òîãäà ||λx|| = |λ|||x|| ≤ ||A||||x||⇒|λ| ≤ ||A||.
2Çàäà÷à.|| · ||Äîêàæèòå, ÷òî ñïåêòðàëüíûé ðàäèóñ ïîëó÷àåòñÿ êàê ïðåäåëρ(A) = lim ||Ak ||1/k ,ãäåk→∞ ïðîèçâîëüíàÿ ôèêñèðîâàííàÿ ìàòðè÷íàÿ íîðìà. ( ñèëó òåîðåìû î âåðõíåé òðåóãîëüíîé ôîðìåäîñòàòî÷íî ðàññìîòðåòü ñëó÷àé âåðõíåé òðåóãîëüíîé ìàòðèöûÇàäà÷à.A.)Äëÿ ïðîèçâîëüíîé ôèêñèðîâàííîé ìàòðè÷íîé íîðìûρ(A) = inf ||P −1 AP ||,ãäå òî÷íàÿP . ( ñèëó òåîðåìû î âåðõíåé òðåóãîëüíîé ôîðìåòðåóãîëüíîé ìàòðèöû A.)íèæíÿÿ ãðàíü áåðåòñÿ ïî âñåì îáðàòèìûì ìàòðèöàìäîñòàòî÷íî ðàññìîòðåòü ñëó÷àé âåðõíåéÇàäà÷à.ìàòðèöûA íåîòðèöàòåëüíû, à ñóììû ýëåìåíòîâ â êàæäîéλ. Äîêàçàòü, ÷òî λ ÿâëÿåòñÿ íàèáîëüøèì ïî ìîäóëþ ñîáñòâåííûì çíà÷åíèåìÂñå ýëåìåíòû êâàäðàòíîé ìàòðèöûñòðîêå îäèíàêîâû è ðàâíûA.Çàìå÷àíèå. îáùåì ñëó÷àå ìàòðèöà ìîæåò íå èìåòü íåîòðèöàòåëüíûõ ñîáñòâåííûõ çíà÷åíèé,ρ(A) íå îáÿçàíî áûòü ñîáñòâåííûì çíà÷åíèåì ìàòðèöû A.
Îäíàêî, äëÿ ëþáîé íåîòðèöàòåëüíîé ìàòðèöû ìàòðèöû, âñå ýëåìåíòû êîòîðîé íåîòðèöàòåëüíû, äîêàçàíî, ÷òî ñïåêòðàëüíûé ðàäèóñïîýòîìóíåïðåìåííî ÿâëÿåòñÿ òàêæå åå ñîáñòâåííûì çíà÷åíèåì (ýòî îñíîâíîé ðåçóëüòàò òåîðèè íåîòðèöàòåëüíûõ ìàòðèö, èçâåñòíûé êàê30.8òåîðåìà ÏåððîíàÔðîáåíèóñà).Òåîðåìà ØóðàÏóñòü λ1 , . .
. , λn ïîëíûé íàáîð n ñîáñòâåííûõ çíà÷åíèé ìàòðèöû A ∈ Cn×n ñ ó÷åòîìêðàòíîñòåé. Ïóñòü ôèêñèðóåòñÿ ïðîèçâîëüíàÿ íóìåðàöèÿ ñîáñòâåííûõ çíà÷åíèé.Òåîðåìà Øóðà. Äëÿ ëþáîé ìàòðèöû A ∈ Cn ñ ïðîèçâîëüíîé ïðåäïèñàííîé íóìåðà-öèåé åå ñîáñòâåííûõ çíà÷åíèé λ1 , . . . , λn ñóùåñòâóåò óíèòàðíàÿ ìàòðèöà X ∈ Cn×nòàêàÿ, ÷òî B = [bij ] = X ∗ AX åñòü âåðõíÿÿ òðåóãîëüíàÿ ìàòðèöà ñ äèàãîíàëüíûìèýëåìåíòàìè bii = λi , i = 1, .
. . , n.Äîêàçàòåëüñòâî. Ïóñòü Ax1 = λ1 x1 , |x1 | = 1 (äëèíà îïðåäåëÿåòñÿ åñòåñòâåííûìñêàëÿðíûì ïðîèçâåäåíèåì). Ïîñòðîèì îðòîíîðìèðîâàííûé áàçèñ x1 , . . . , xn , íà÷èíàþùèéñÿ ñ âåêòîðà x1 , è ïóñòü X = [x1 , . . . , xn ]. Ëåãêî ïðîâåðèòü, ÷òîλ1 u >AX = X, B ∈ C(n−1)×(n−1) , u ∈ Cn−1 .0 BÇàìåòèì, ÷òî det(A − λI) = (λ1 − λ)(λ2 − λ) . .
. (λn − λ) = (λ1 − λ) det(B − λIn−1 ). Çíà÷èò,B èìååò ñîáñòâåííûå çíà÷åíèÿ λ2 , . . . , λn .Ðàññóæäàÿ ïî èíäóêöèè, ïðåäïîëîæèì, ÷òî Y ∗ BY = T , ãäå Y óíèòàðíàÿ ìàòðöèàïîðÿäêà n − 1, à T âåðõíÿÿ òðåóãîëüíàÿ ìàòðèöà ïîðÿäêà n − 1 ñ äèàãîíàëüíûìèýëåìåíòàìè λ2 , . . . , λn .  èòîãå>λuY101∗∗(Ye X )A(X Ye ) =,Ye =.0T0 YÈç óíèòàðíîñòè ìàòðèöû Y ñëåäóåò, ÷òî Ye óíèòàðíàÿ ìàòðèöà. Ìàòðèöà X Ye óíèòàðíà êàê ïðîèçâåäåíèå óíèòàðíûõ ìàòðèö.
2Å. Å. Òûðòûøíèêîâ203Ñôîðìóëèðîâàííàÿ âûøå òåîðåìà î òðåóãîëüíîé ôîðìå ìàòðèöû ÿâëÿåòñÿ, êîíå÷íî,ñëåäñòâèåì òåîðåìû Øóðà. Ïðè ýòîì â òåîðåìå Øóðà óòâåðæäàåòñÿ áîëüøå òðåóãîëüíàÿ ôîðìà ñ ïðåäïèñàííûì ïîðÿäêîì ñîáñòâåííûõ çíà÷åíèé íà äèàãîíàëè äîñòèãàåòñÿïðåîáðàçîâàíèåì ïîäîáèÿ ñ ïîìîùüþ óíèòàðíîé ìàòðèöû.Îòìåòèì êîíñòðóêòèâíûé õàðàêòåð ïðèâåäåííîãî äîêàçàòåëüñòâà òåîðåìû Øóðà.Êàê òîëüêî íàéäåíû ñîáñòâåííîå çíà÷åíèå λ1 è îòâå÷àþùèé åìó ñîáñòâåííûé âåêòîðx1 , çàäà÷à îïðåäåëåíèÿ îñòàëüíûõ ñîáñòâåííûõ çíà÷åíèé ñâîäèòñÿ ê àíàëîãè÷íîé çàäà÷åïîðÿäêà n−1.
1 Òàêîãî ðîäà ïðèåì ïîíèæåíèÿ ðàçìåðíîñòè èíîãäà íàçûâàþò äåôëÿöèåé.Çàäà÷à.Äîêàæèòå, ÷òî äëÿ ëþáîé êîìïëåêñíîé ìàòðèöûQ òàêàÿ, ÷òî ìàòðèöà B = Q∗ AQ ÿâëÿåòñÿäèàãîíàëüíîé, åñëè bij = 0 ïðè |i − j| > 1.) 2ìàòðèöà30.9Aïîðÿäêà3ñóùåñòâóåò óíèòàðíàÿòðåõäèàãîíàëüíîé. (ÌàòðèöàBíàçûâàåòñÿòðåõ-Äåëèòåëè è ïîäïðîñòðàíñòâàÂñëåäñòâèå ìàòðè÷íîãî âûðàæåíèÿ èíâàðèàíòíîñòè, ëþáîìó èíâàðèàíòíîìó ïîäïðîñòðàíñòâó ìàòðèöû A ñîîòâåòñòâóåò íåêîòîðûé äåëèòåëü åå õàðàêòåðèñòè÷åñêîãî ìíîãî÷ëåíà, ÿâëÿþùèéñÿ õàðàêòåðèñòè÷åñêèì ìíîãî÷ëåíîì ñóæåíèÿ A íà äàííîå ïîäïðîñòðàíñòâî.
Èç òåîðåìû Øóðà ëåãêî âûâåñòè è îáðàòíîå.Òåîðåìà î äåëèòåëÿõ è ïîäïðîñòðàíñòâàõ. Ïóñòü A ∈ Cn×n è f (λ) = det(A−λI) õàðàêòåðèñòè÷åñêèé ìíîãî÷ëåí. Ïðåäïîëîæèì, ÷òî f (λ) äåëèòñÿ íà ìíîãî÷ëåí p(λ)ñòåïåíè k . Òîãäà A èìååò èíâàðèàíòíîå ïîäïðîñòðàíñòâî L ðàçìåðíîñòè k òàêîå,÷òî p(λ) åñòü õàðàêòåðèñòè÷åñêèé ìíîãî÷ëåí ñóæåíèÿ A íà L.Äîêàçàòåëüñòâî. Óïîðÿäî÷èì êîðíè ìíîãî÷ëåíà f (λ) òàêèì îáðàçîì, ÷òî ïåðâûå kêîðíåé áóäóò òàêæå êîðíÿìè äåëèòåëÿ p(λ). Ñîãëàñíî òåîðåìå Øóðà, ñóùåñòâóþò X èB òàêèå, ÷òî â âåðõíåé òðåóãîëüíîé ìàòðèöå B ïåðâûå k ýëåìåíòîâ ãëàâíîé äèàãîíàëèáóäóò êîðíÿìè p(λ). Ïóñòü Xk ïðÿìîóãîëüíàÿ ìàòðèöà, ñîäåðæàùàÿ ïåðâûå k ñòîëáöîâ X , à Bk ëåâûé âåðõíèé áëîê ïîðÿäêà k â ìàòðèöå B . Òîãäà AXk = Xk Bk è ïðèýòîì det(Bk − λI) = p(λ). 21 Íèîòêóäà, âïðî÷åì, íå ñëåäóåò, ÷òî ñîáñòâåííûé âåêòîð ìàòðèöûêàêîìó-òî ñîáñòâåííîìó âåêòîðó ìàòðèöûA.2001) è ÷òî ñóùåñòâóþò ìàòðèöû ïîðÿäêà5,Bàâòîìàòè÷åñêè ñîîòâåòñòâóåò2 Íåäàâíî áûëî äîêàçàíî, ÷òî òî æå âåðíî äëÿ ëþáîé êîìïëåêñíîé ìàòðèöû ïîðÿäêà4(V.
Pati,êîòîðûå íå ïðèâîäÿòñÿ ê òðåõäèàãîíàëüíîìó âèäó ïðåîá-ðàçîâàíèåì ïîäîáèÿ ñ ïîìîùüþ óíèòàðíîé ìàòðèöû.204Ëåêöèÿ 30Ëåêöèÿ 3131.1Ìíîãî÷ëåíû îò ìàòðèöûÅñëè f (λ) = a0 + a1 λ + . . . + am λm ìíîãî÷ëåí îò λ, òî äëÿ ëþáîé êâàäðàòíîé ìàòðèöûA èìååò ñìûñë âûðàæåíèåf (A) ≡ a0 I + a1 A + . . . + am Am .Îíî íàçûâàåòñÿ ìíîãî÷ëåíîì îò ìàòðèöû A. 1 ßñíî, ÷òî f (A) êâàäðàòíàÿ ìàòðèöàòîãî æå ïîðÿäêà, ÷òî è A.Åñëè f (A) = 0, òî ãîâîðÿò, ÷òî ìíîãî÷ëåí f (λ) ÿâëÿåòñÿ àííóëèðóþùèì ìíîãî÷ëå2íîì äëÿ A. Ïóñòü A ìàòðèöà ïîðÿäêà n. Òîãäà ñèñòåìà ìàòðèö I, A, A2 , .
. . , Anáóäåò ëèíåéíî çàâèñèìîé (ïî÷åìó?) ⇒ äëÿ ëþáîé ìàòðèöû ïîðÿäêà n èìååòñÿ àííóëèðóþùèé ìíîãî÷ëåí ñòåïåíè íå âûøå n2 . äåéñòâèòåëüíîñòè âñåãäà èìååòñÿ àííóëèðóþùèé ìíîãî÷ëåí ñòåïåíè n (ìû ñêîðîäîêàæåì, ÷òî õàðàêòåðèñòè÷åñêèé ìíîãî÷ëåí äëÿ A ÿâëÿåòñÿ àííóëèðóþùèì). Èíîãäàìîæíî íàéòè àííóëèðóþùèå ìíîãî÷ëåíû åùå ìåíüøåé ñòåïåíè. Àííóëèðóþùèé ìíîãî÷ëåí ìèíèìàëüíîé ñòåïåíè íàçûâàåòñÿ ìèíèìàëüíûì ìíîãî÷ëåíîì äëÿ A.Ïðè ïîèñêå èíâàðèàíòíûõ ïîäïðîñòðàíñòâ ìíîãî÷ëåíû îò ìàòðèöû A èíòåðåñíûòåì, ÷òî kerf (A) è imf (A) âñåãäà èíâàðèàíòíû îòíîñèòåëüíî A (äîêàæèòå!).31.2Êîðíåâûå ïðîñòðàíñòâàÏðåäïîëîæèì, ÷òî ìàòðèöà A ∈ Cn×n èìååò m ïîïàðíî ðàçëè÷íûõ ñîáñòâåííûõ çíà÷åíèé λ1 , .
. . , λm àëãåáðàè÷åñêîé êðàòíîñòè k1 , . . . , km , ñîîòâåòñòâåííî. Ýòî îçíà÷àåò,÷òîf (λ) ≡ det(A − λI) = f1 (λ) . . . fm (λ), fi (λ) = (λi − λ)ki , 1 ≤ i ≤ m;λi 6= λj , i 6= j.Ïîäïðîñòðàíñòâà Ki ≡ kerfi (A) = ker(A − λi I)ki íàçûâàþòñÿ êîðíåâûìè ïðîñòðàíñòâàìè ìàòðèöû A.Ëåììà 1. Êîðíåâîå ïðîñòðàíñòâî Ki èíâàðèàíòíî îòíîñèòåëüíî A è èìååò ðàçìåð-íîñòü ki . Õàðàêòåðèñòè÷åñêèé ìíîãî÷ëåí ñóæåíèÿ A íà Ki åñòü fi (λ) = (λi − λ)ki .Ñóæåíèå A − αI íà Ki ïðè α 6= λi ÿâëÿåòñÿ îáðàòèìûì îïåðàòîðîì.Äîêàçàòåëüñòâî.
Èíâàðèàíòíîñòü: åñëè fi (A)x = 0, òî fi (A)(Ax) = A(fi (A)x) = 0.Ïî òåîðåìå î âåðõíåé òðåóãîëüíîé ôîðìå, ñóùåñòâóåò ïîäîáíàÿ A âåðõíÿÿ òðåãîëüíàÿ ìàòðèöà B = X −1 AX ñ ýëåìåíòàìèbjj = λi ,1 Ìíîãî÷ëåí îò ìàòðèöû1 ≤ j ≤ ki ,bjj 6= λi , ki + 1 ≤ j ≤ n.(∗)A èìååò ñêàëÿðíûå êîýôôèöèåíòû. Òåðìèí ìàòðè÷íûé ìíîãî÷ëåí îáû÷íîλ, êîýôôèöèåíòû êîòîðîãî ÿâëÿþòñÿ ìàòðèöàìè.èñïîëüçóåòñÿ äëÿ îáîçíà÷åíèÿ ìíîãî÷ëåíà îò205206Ëåêöèÿ 31Î÷åâèäíî, C ≡ B − λi I = X −1 (A − λi I)X ⇒ C ki = (B − λi I)ki = X −1 (A − λi I)ki X.Çàïèøåì C â áëî÷íîì âèäåP QC=,0 Rãäå P è R âåðõíèå òðåóãîëüíûå ìàòðèöû ïîðÿäêà ki è n − ki . Ïðè ýòîì P èìååòíóëåâóþ ãëàâíóþ äèàãîíàëü ⇒ P ki = 0 (ïðîâåðÿåòñÿ íåïîñðåäñòâåííî: â ìàòðèöå P 2ê íóëåâîé ãëàâíîé äèàãîíàëè äîáàâëÿåòñÿ åùå îäíà äèàãîíàëü, â P 3 åùå îäíà, è òàêäàëåå).Ñëåäîâàòåëüíî, k eeP i Q0 QkiC ==,0 R ki0 R kiãäå âñå äèàãîíàëüíûå ýëåìåíòû âåðõíåãî òðåóãîëüíîãî áëîêà Rki ïîðÿäêà n−ki îòëè÷íûe êàêîé-òî áëîê ðàçìåðîâ ki ×(n−ki ).
Íåçàâèñèìî îò åãî âèäà, íàõîäèìîò íóëÿ. Áëîê Qrank C ki = n − ki ⇒ rank(A − λi I)ki = n − ki ⇒ dim ker(A − λi I)ki = ki .Ìàòðèöà ñóæåíèÿ A íà Ki ïðåäñòàâëÿåò ñîáîé ëåâûé âåðõíèé áëîê ïîðÿäêà ki â ìàòðèöå B = X −1 AX . Ñîãëàñíî (∗), âñå ýëåìåíòû åãî ãëàâíîé äèàãîíàëè ðàâíû λi .