BAULA1 (1110624), страница 25
Текст из файла (страница 25)
В современной литературе по архитектуре ЭВМ у термина "канал ввода/вывода" есть много синонимов. Часто их называют процессорами ввода/вывода или периферийными процессорами (смысл этих названий легко понять из назначения данных устройств). Наиболее "навороченные" каналы называют иногда машинами переднего плана (front-end computer), здесь имеется в виду, что все внешние устройства, а, следовательно, и пользователи, могут общаться с центральной частью компьютера только через эти каналы. Кроме того, машины передного плана могут разгрузить центральный процессор, взяв на себя, например, обработку прерываний от внешних устройств, весь диалог с пользователями, компиляцию программ в объектный код и т.д. Центральный процессор при этом будет выполнять только свою основную работу – быстрый счёт программ пользователей.
Чаще всего на комьютере есть несколько каналов ввода/вывода, так как эти каналы выгоднее делать специализированными. Обычно один канал ввода/вывода успевает обслуживать все медленные внешние устройства (клавиатура, печать, дисплеи, линии связи и т.д.), такой канал называется мультиплексным. Один или несколько других каналов работают с быстрыми внешними устройствами (обычно это дисковая память), такие каналы называются селекторными. В отличие от мультиплексного канала, который успевает, быстро переключаясь с одного медленного внешнего устройства на другое, обслуживать их все как бы одновременно, селекторный канал в каждый момент времени может работать только с одним быстрым внешним устройством. На рис. 15.3 показана схема ЭВМ с каналами ввода/вывода.
Как видно из этого рисунка, внешние устройства подключаются к каналам не напрямую, а через специальные электронные схемы, которые называются контроллерами. Это связано с тем, что каналы являются универсальными, они должны допускать подключение внешних устройств, очень разных по своим характеристикам. Таким образом, канал как бы работает с некоторыми обобщёнными внешними устройствами, а все особенности связи с конкретными устройствами реализуются в
контроллерах. Например, один контроллер предназначен для подключения к нему жёстких дисков, другой – архивных накопителей на магнитной ленте (так называемых стриммеров) и т.д.
Как мы уже говорили, для компьютеров с общей шиной при выполнении системного вызова центральный процессор переключается на процедуру-обработчика прерывания, и эта процедура выполняет программу, реализующую требуемое действие, например, чтение массива с диска в оперативную память. Другими словами, во время выполнения процедуры-обработчика прерывания программа пользователя, естественно, не считается.
Совершенно по-другому производится обработка системного вызова на компьютере с каналами ввода/вывода. После того, как программа пользователя произведёт системный вызов, вызванная процедура-обработчик прерывания посылает соответствующему каналу приказ начать выполнение программы канала, реализующей требуемое действие, после чего производится немедленный возврат на выполнение программы пользователя. Далее начинается параллельная работа центрального процессора по выполнению программы пользователя и канала, выполняющего свою собственную программу по обмену с внешними устройствами, например, по чтению массива с диска в оперативную память. 1
Разумеется, параллельная работа нескольких устройств может привести к весьма неприятным последствиям. Например, если некоторая программа начнёт присваивать новые значения элементам массива, который в это время канал записывает на диск, то, как легко представить, ничего хорошего не получится. Для предотвращения таких ситуаций существуют особые аппаратные и программные средства, позволяющими, как говорят, синхронизовать параллельную работу нескольких устройств. С этими средствами Вы познакомитесь в следующем семестре.
15.3. Уровни параллелизма.
Как мы знаем, первые компьютеры удовлетворяли почти всем принципам Фон Неймана. В этих компьютерах поток последовательно выполняемых в центральном процессоре команд обрабатывал поток данных. ЭВМ такой простой архитектуры носят в литературе сокращённое название ОКОД (Один поток Команд обрабатывает Один поток Данных – английское сокращение SISD: Single Instruction Single Data). В настоящее время компьютеры, однако, нарушают почти все принципы Фон Неймана. Дело в том, что вычислительная мощность современных компьютеров базируется как на скорости работы всех узлов ЭВМ, так и, в значительной степени, на параллельной обработке данных. В заключение нашего краткого изучения архитектуры современных ЭВМ рассмотрим классификацию способов параллельной обработки данных на компьютере.
-
Параллельное выполнения программ может производиться на одном компьютере, если он имеет несколько центральных процессоров. Как правило, в этом случае компьютер имеет и несколько периферийных процессоров (каналов). Существуют ЭВМ, у которых могут быть от нескольких десятков до нескольких сотен и даже тысяч центральных процессоров. В таких компьютерах много потоков команд одновременно обрабатывают много потоков данных, в научной литературе это обозначается сокращением МКМД (или по-английски MIMD).
-
Параллельные процессы в рамках одной программы. Программа пользователя может породить несколько параллельных процессов обработки данных, каждый такой процесс для операционой системы является самостоятельной единицей работы. Процессы одной задачи могут псевдопараллельно выполняться в мультипрограммном режиме точно так же, как и задачи независимых пользователей.
В качестве примера рассмотрим случай, когда программисту необходимо вычислить сумму значений двух функций F(x)+G(x), причём каждая из этих функций для своего вычисления требует больших затрат процессорного времени и производит много обменов данными с внешними запоминающими устройствами. В этом случае программисту выгодно распараллелить алгоритм решения задачи и породить в своей программе два параллельных вычислительных процесса, каждому из которых поручить вычисления одной из этих функций. Можно понять, что в этом случае вся программа будет посчитана за меньшее физическое время, чем при использовании одного вычислительного процесса. Действительно пока один процесс будет производить обмен данными с медленными внешними устройствами, другой процесс может продолжать выполняться на центральном процессоре, а в случае с одним процессом вся программа была бы вынуждена ждать окончания обмена с внешним устройством. Стоит заметить, что скорость счёта программы с несколькими параллельными процессами ещё больше возрастёт на компьютерах, у которых более одного центрального процессора.
Подробно параллельные процессы Вы будете изучать в следующем семестре.
-
Параллельное выполнение нескольких команд одной программы производится конвейером центрального процессора. В мощных ЭВМ центральный процессор может содержать несколько конвейеров. Например, один из конвейеров выполняет команды целочисленной арифметики, другой предназначен для обработки вещественных чисел, а третий – для всех остальных команд.
-
Параллельная обработка данных в программе производится на так называемых векторных ЭВМ. У таких ЭВМ наряду с обычными (скалярными) регистрами есть и векторные регистры, которые могут хранить и выполнять операции над векторами целых или вещественных чисел. Пусть, например, у такой ЭВМ есть регистры axv и bxv, каждый из которых может хранить вектор из 64 чисел, тогда команда векторного сложения addv axv,bxv будет производить параллельное покомпонентное сложение всех элементов таких векторов по схеме axv[i]:=axv[i]+bxv[i]. Можно сказать, что на векторных ЭВМ один поток (векторных) команд обрабатывает много потоков данных (поток векторных данных). Отсюда понятно сокращённое название ЭВМ такой архитектуры – ОКМД (по-английски SIMD).1
Параллельная обработка команд и данных позволяет значительно увеличить производительность компьютера. Необходимо сказать, что в современных компьютерах обычно реализуется сразу несколько из рассмотренных выше уровней параллелизма. Познакомится с историей развития параллельной обработки данных можно, например, по книге [15]. Заметим, однако, что, несмотря на непрерывный рост мощности компьютеров, постоянно появляются всё новые задачи, для счёта которых необходимы ещё более мощные ЭВМ. Таким образом, к сожалению, рост сложности задач опережает рост производительности компьютеров.
Список литературы.
-
Г. Майерс. Архитектура современных ЭВМ (в 2-х книгах). – Мир, 1985.
-
Burks A.W., Goldstine H.H., von Neumann J. Preliminary Discussion of the Logical Design of an Electronic Computing Instrument. – Pt. I, vol. I, Institutefor Advanced Study, Princeton, NJ, 1946.
-
Королёв Л.Н. Структуры ЭВМ и их математическое обеспечение. – Наука, 1978.
-
Любимский Э.З., Мартынюк В.В., Трифонов Н.П. Программирование. – Наука, 1980.
-
Пильщиков В.Н. Программирование на языке Ассемблера IBM PC. – Диалог-МИФИ, 1994.
-
Скэлтон Л.Дж. Персональная ЭВМ IBM PC и XT. Программирование на языке Ассемблера. – Радио и связь, 1991.
-
Абель П. Язык Ассемлера для IBM PC и программирования. – Высшая школа, 1992.
-
Нортон П., Соухэ Д. Язык Ассемблера IBM PC. – Компьютер, 1993.
-
Ю-Чжень Лю, Гибсон Г. Микропроцессоры семейства 8086/8088. – Радио и связь, 1987.
-
Донован Дж. Системное программирование. – Мир, 1975.
-
Брусенцов Н.П. Миникомпьютеры. – Наука, 1976, 272с.
-
Дейт К. Введение в системы баз данных. – Наука, 1980.
-
Успенский В.А. Нестандартный, или нетрадиционный анализ. – Знание, серия Математика, кибернетика № 8, 1983.
-
Девис М. Прикладной нестандартный анализ. – Мир, 1980.
-
Головкин Б.А. Параллельные вычислительные системы. – Наука, 1980.
-
Г. Майерс. Архитектура современных ЭВМ (в 2-х книгах). – Мир, 1985.
-
Burks A.W., Goldstine H.H., von Neumann J. Preliminary Discussion of the Logical Design of an Electronic Computing Instrument. – Pt. I, vol. I, Institutefor Advanced Study, Princeton, NJ, 1946.
-
Королёв Л.Н. Структуры ЭВМ и их математическое обеспечение. – Наука, 1978.
-
Любимский Э.З., Мартынюк В.В., Трифонов Н.П. Программирование. – Наука, 1980.
-
Пильщиков В.В. Программирование на языке Ассемблера IBM PC. – Диалог-МИФИ, 1994.
-
Скэлтон Л.Дж. Персональная ЭВМ IBM PC и XT. Программирование на языке Ассемблера. – Радио и связь, 1991.
-
Абель П. Язык Ассемлера для IBM PC и программирования. – Высшая школа, 1992.
-
Нортон П., Соухэ Д. Язык Ассемблера IBM PC. – Компьютер, 1993.
-
Ю-Чжень Лю, Гибсон Г. Микропроцессоры семейства 8086/8088. – Радио и связь, 1987.
-
Донован Дж. Системное программирование. – Мир, 1975.
-
Брусенцов Н.П. Миникомпьютеры. – Наука, 1976, 272с.
-
Дейт К. Введение в системы баз данных. – Наука, 1980.
-
Успенский В.А. Нестандартный, или нетрадиционный анализ. – Знание, серия Математика, кибернетика № 8, 1983.
-
Девис М. Прикладной нестандартный анализ. – Мир, 1980.
1 Можно дать загрузчику явное указание на размещение конкретного сегмента с заданного адреса оперативной памяти (мы изучим это позднее в нашем курсе), но это редко когда нужно программисту. Наоборот, лучше писать программу, которая будет правильно работать при любом размещении её сегментов в оперативной памяти.
2 При достижении в программе конца оперативной памяти (или конца сегмента при сегментной организации памяти) обычно выполняется команда, расположенная в начале памяти или в начале этого сегмента.
1 В принципе переход возможен и при изменении значения только одного регистра CS, однако в практике программирования такие переходы практически не имеют смысла и не реализуются.
1 Необходимо учитывать, что в момент выполнения команды перехода счётчик адреса IP уже указывает на следующую команду, что, конечно, существенно при вычислении величины смещение. Но, так как эту работу выполняет программа Ассемблера, мы на эту особенность не будем обращать внимания.
2 Например, при написании встроенных программ для управления различными устройствами (стиральными машинами, видеомагнитофонами и т.д.), либо программ дла автоматических космических аппаратов, где память относительно небольшого объёма, т.к. особая, способная выдерживать космическое излучение.
1 Флаг чётности равен единице, если в восьми младших битах результата содержится чётное число двоичных единиц. Мы не будем работать с этим флагом.
1 Если не принимать во внимание то, что константа в Паскале имеет тип, это позволяет контролировать её использование, а в Ассемблере это просто указание о текстовой подстановке вместо имени операнда директивы эквивалентности.
1 Вообще говоря, это же правило можно записать и как "первый пришёл – последний вышел" (английское сокращение FILO). В литературе встречаются оба этих правила и их сокращения.