Главная » Просмотр файлов » X.-Физическая-кинетика

X.-Физическая-кинетика (1109687), страница 8

Файл №1109687 X.-Физическая-кинетика (Ландау Л.Д., Лифшиц Е.М. - Теоретическая физика в 10 томах) 8 страницаX.-Физическая-кинетика (1109687) страница 82019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

') Решения уравнения Больцмана для газа с вращающимися молекулами впервые рассматривались Ю.М. Каганом и А.М. Афанасьевым (1961). 39 вязкость глвл Условие применимости изложенного метода решения кинетического уравнения (основанного на предположении о близости 1 к 1а) можно выаспить пУтем оЦенки интегРала столкновений согласно (3.12). Средняя энергия молекулы е Т, >юэтому оценка обеих частей уравнения (7.3) дает Р д(т 8п>>1, откуда я 1.

Условие ЯТ ф~гУТ~у'Т << 1 (эквивалентпое требованию д~ << Я означает, следовательно, что расстояния А, на которых температура испытывает существенное изменение (~TТ~ Т>>Л), должны быть велики по сравнению с 1. Другими словами, функция вида (6.1) предсгавляст собой первые члены разложения решения кинетического уравнения по степеням малого отношения 1>>Ь. Оценка интеграла (7.7) с 8 1 приводит к формуле >г с>УМ, (7.10) где с —.

отнесенная к одной молекуле теплоемкость газа. Это .—. известна,я элементарная газокинетическая формула (ср. примеч. на с. 57). Положив в ней 1 1/Лп, с 1 и и ~,/У/т, имеем Гт >г в1/т (7.11) 3 8. Вязкость газа Вычисление вязкости газа с помощью кинетического уравнения производится аналогично вычислению теплопроводности. В этой оценке сечение >т относится к средней тепловой скорости молекул, и в этом смысле его надо понимать как функцию температуры. С увеличением скорости сечение, вообще говоря, убывает; соответственно о. будет убывающей функцией температуры. При нс слишком низких температурах молекулы газа ведут себя, качественно, как твердые упругие частицы, взаимодействующие друг с другом лишь при непосредственных столкновениях. Такому характеру взаимодействия отвечает слабо зависящее от скорости (а потому и от температуры) сечение столкновений.

В этих условиях зависимость х от температуры близка к пропорцио»алы>ости >lТ. При заданной температуре коэффициент теплопроводности, как это видно из (7.11), не зависит от плотности газа или, что то же, от его давления. Подчеркнем, что это важное свойство не связано со сделанными при оценке п1>едположепиями и является точным в рамках кинетического уравнения Вольцмана. Оно возникает как спедствие того, что в этом уравнении учитываются только парные столкновения молекул (именно поэтому длина пробега оказывается обратно пропорциональной плотности газа). 4О КИИЕТИЧЕСКЛЯ ТЕОРИЯ ГАЗОИ 1'Л 1 1 2~ т(п пд — — д ди ( =У(8 д).

(8.6) Дополнительные условия (6.3) удовлетворяются автоматически. Поток импульса вычисляется по функции распределения как интеграл (5.8). Интересующая нас часть этого тензора тензор вязких напряжений дается интегралом 'д = — ~,) дУОХ11Г = У дан (8.7) Цидта = —,) ~оиоюддтб дГ. (8.8) Разница состоит в том, что отклонение от равновесия обусловлено не градиентом температуры, а неоднородностью потока газа по скорости макроскопического движения Ъ".

При этом снова предполагается, что характерные размеры задачи А» 1. Существуют, как известно, два вида вязкости, коэффициенты которых принято обозначать посредством й и 1,. Они определяются как коэффициенты в тензоре вязких напряжений о ю входящем как часть в тензор плотности потока импульса; П д = Рд д + р'Р' Ъ'д — О.' д, (8.1) 1т'Э вЂ” — 2п($'д — -б Яс11РЪР) +1,6 В111ЪЪ", (8.2) где 1т д определено согласно (6.12) (см. Ъ1, 3 15).

В несжимаемой жидкости проявляется лишь вязкость 11. «Вторая» жс вязкость 1', проявляется при движениях, в которых г11ни Ъ' ~ О. Оба коэффициента целесообразно вычислять раздельно. Опустив в общем кинетическом уравнении (6.19) член с градиентом температуры, перепишем его в виде гпгОпд (1'„~ — — д д с11ЪЪг) + ( — ) бт1РЪ7= 1(Х), (8.3) где в левой части ра1делены члены, создшощие первую и вторую вязкости. При вычислении первой вязкости надо считать, что <11не Ъг = О.

Получающееся уравнение тождественно перепишем в виде гп (и~11д — — д~див ) Ъ'„д = 7(Х), (8.4) 3 где оба тепзорных множителя в левой стороне имеют равный нулю след. Решение этого уравнения ищем в виде Х = 8'Од1г д: (8.5) где 8 д(Г) симметричный тензор; поскольку след Р'О = О, то прибаглением к 8 д члена с1зд 11 можно всегда добиться того,. чтобы было и я = О, не меняя при этом функции т. Для 8 имеем уравнение вязкость глох Величины ц з ~ составляют тензор четвертого ранга, симметричный по парам индексов а, р' и э, б и дающий нуль при упрощении по паре 7, б.

Ввиду изогропии газа этот тензор может выражаться только через единичный тензор б й. Выражение, удовлетворяющее этим условиям: 2 ц„р~~ = ц ~б ~б~~+ б ~бзт — — б„дб~~~ з Тогда и,',и — — 2г1$' д, так что г1 есть искомый скалярный коэффи- циент вязкости. Он определяется путем упрощения тензора по пара,м индексов о, у и р', б: Ч = — — '" 1попвК„дБбр 1От (8.9) В одноатомном газе я д является функцией только от вектора и.

Общий вид такого симметричного тензора с равным нулю следом есть 21 8 д = (и иа — — б эп ) 8(п) (8.10) (см. примеч. на с. 57). При этом температуропроводность и кинсматическая вязкость оказываются одинакового порядка величины: м/(Хсг) 0,1(№п) И. (8.12) Положив в (8.11) 1 1/№т и й - (Т/т)'7з, получим ц чlпГ1'7 и. (8.13) Все сказанное в з 7 о зависимости н от давления и от температуры относится и к коэффициенту вязкости 9. Для вычисления второго коэффициента вязкости надо считать отличным от нуля второй член в левой части кинетического уравнения (8.3): ( — ) Жги = 1(т).

(8.14) с одной только скалярной функцией 8(п). В многоатомных газах тензоР 8 в составлветсЯ с помощью болыпего числа пеРеменных, в том числе двух векторов и и М. В отсутствие стереоизометрии 8 д может содеРжать только истинно-тензоРные члены; в газе сгереоизомерного вещества допускаются также и псевдотензорные члены. Оценка коэффициента вязкости, аналогичная оценке (7.10) для коэффициента теплопроводности, приводит к известной элементарной газокинетической формуле ц тТг71 (8.11) КИПЕ"1'ИЧЕСКАЯ ТЕОРИЯ ГАЗОН 1'Л 1 Ищем решение в виде ;С = 8 111у ЪГ и для функции 8 находим уравнение (8.15) «пи в(Г) 8 с„ (8.16) Вычислив тепзор напряжений и сравнив его с выражением 1,"б в г)гуЪГ, получим коэффициент вязкости в виде »1 ).„г .З„лг зт (8.17) У одноатомпых газов с(Г) = т112,12, си = 3,12, и левая часть уравнения (8.16) обращается в нуль.

Из уравнения 1(8) = О глгедует тогда, что и я = О, а потому и 1', = О. Мы приходим, таким образом, к интересному результпуч у одноагомных газов вторая вязкость равна нулю ). 11 д1'в и 11рз1) = и рв ' = и рви в дя 1налравлсния и и р совпадают, поэтому раив = рви ). Уравнения непрерывности и сохранения энтропии в использованном в з 6 виде остаются справедливыми и при движении (с малыми скоростями Ъ") релятивистского газа.

') Подчеркнем, что речь идет о газах именно в том приближении по «параметру газовости» %11~, которому отвечает уравнение Больцмана (и в котором вязкость 11 оказывается независящей от плотности). В следующих приближениях (следующие члены «вириального разложения» — сль З 18) появляется и отличная от нуля вязкость (. Сущеетвенна также и квадратичная зависимость энергии частицы от ео импульса; в релятивистском «одноатомном» газе вторая вязкость уже не равна нулю (она обращается, однако, снова в нуль в другом предельном случае — ульграрелятивистском; см. задачу).

1) Во избежание недоразумений напомним, что в релятивистском 1взе градие1гг давлопия даст свой вклад в теплопроводящий поток энергии (см. У1, з 126). Задача Показать, что вторая вязкость газа ультрарелятивистских частиц равна нулю (И.М. Хала«вникав, 1955). Р е ш е н и е. Энергия в релятивистской частицы в системе отсчета К, в которой газ движется с (нерелятивистской) скоростью ЪГ, связана с ое энергией в' в системе К',в которой газ покоится, формулой в' = в — рЪ', где р импульс частицы в системе К (это - формула преобразования Лоренца,в которой опущены члены более чем первого порядка по Ъ'). Функция распределения в систелш К: ув(в — рЪ'), где )в1в~) — распределение Больцмаиа.

Интересуясь лишь вязкостью, мы можем с самого начала считать равными нулю градиенты всех макроскопических величин, за исключением лишь скорости ъ', тогда н дъ»,1д1 = О, так что послодиий член в (6.10) выпадает 1). В (6.11) первые два члена тоже отсутствуют, а третий заменяется на симмв"егия кинет'н веских коэаьицивнтов Поэтому остаются в силе и формулы Г6.16). В результате кинетическое уравнвние принимаот вид (- -Л' = с 1 ~ рв — А*в — ) К*в = 1(х) с,, 1 В задаче о второй вязкости надо положить 1"„з = — Ь в г)1о т', и тогда 3 (,) ор ег — — — ~61 ЬУ=1(Х).

3 с„) В ультрарелятивистском газе о — с, е = ср, а теплоемкость с„= 3 1сьь Ъ', 3 44, задача), так что левая часть уравнения, а с нею и т обращаются в нуль. 3 9. Симметрия кинетических коэффициентов Коэффициепты теплопроводпости и вязкости относятся к категории величин, определяющих процессы релаксации с'габо неравновесных систем. Эти величины -. кинепипческие козффпцпенты — удовлетворяют принципу симметрии 1прпнцип Онсагера), который может быть установлен в общем виде, без рассмотрения конкретных релаксациоиных механизмов. Но при конкретном вычислении кинетических коэффициентов с помогцью кинетических уравнений принцип симметрии не дает каких-либо условий, которые должны были бы дополнительно налагаться на решение уравнений. При таком вычислении требования этого принципа удовлетворяются, разумеется, автоматически.

Характеристики

Тип файла
DJVU-файл
Размер
4,03 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее