Главная » Просмотр файлов » Диссертация

Диссертация (1104996), страница 10

Файл №1104996 Диссертация (Теоретическое исследование электронного транспорта в молекулярном одноэлектронном транзисторе) 10 страницаДиссертация (1104996) страница 102019-03-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 10)

Знаки индуцирующего и индуцированного зарядов всегдапротивоположны по знаку, поэтому взаимная емкость ≤ 0.482.2. Собственная емкость объектов наномасштабаРанее [106, 107] был предложен способ определения собственной эффективнойемкости, применимый как для атомов, так и для любых других наноразмерных объектов.В методе, описанном в работе [107] используется зависимость полной энергии молекулыв основном состоянии от ее полного электростатического заряда.Рассмотрим изолированный проводник, заряженный до некоторого заряда q.Изменение полной энергии проводника можно записать как∆EC (n) = µn + e2 n2 /C,(2.6)где µ — химический потенциал проводника, q/e = n, C — его электрическая емкость.

Изсоотношения (2.6) следует, что понятие эффективной собственной емкости одиночноймолекулы можно определить, взяв за основу зависимость полной энергии в основномсостоянии от ее полного заряда. Такой подход удобен потому, что полная энергиямолекулы есть скалярная величина, определенная в квантовой механике точно.В работе [107] для нахождения упомянутой зависимости приведено решениеуравнения Шредингера и для изолированных атомов и некоторых молекул показано,что зарядовая энергия нанообъекта EC (n) с высокой степенью точности может бытьпредставлена полиномом 2-ой степени:EC (n) = Eполн.,0 (n) − Eполн.,0 (0) ≈ a22 n2 + a21 n ,(2.7)где n — зарядовое состояние молекулы, Eполн.,0 (n) — полная энергия молекулы восновном (энергетическом) состоянии и зарядовом состоянии n. Для коэффициентовквадратичного разложения показано, чтоI1 − A1,2I1 + A1a21 ≈,2a22 ≈(2.8)где I1 – первый потенциал ионизации молекулы, A1 – первая энергия сродствак электрону.

По определению сродство к электрону наночастицы (молекулы,атома, иона) — это минимальная энергия, необходимая для удаления электрона изсоответствующего отрицательного иона на бесконечность, т.е. оно равно энергииионизации отрицательного иона [113]. В общем случае для молекулярного объектас полным числом электронов N по определению потенциал ионизации и сродства к49электрону равныI(N) = Eполн.,0 (N − 1) − Eполн.,0 (N) ,(2.9)A(N) = Eполн.,0 (N) − Eполн.,0 (N + 1).(2.10)В итоге, из выражений (2.7) и (2.8) следует, что эффективную собственную емкость Cмолекулярных нанообъектов можно определить, какCi =2e2.I1 − A1(2.11)При этом на примере коэффициентов разложения (2.8) несложно увидеть, чтоэлектрические свойства молекулярных объектов очень тесно связаны с их химическимисвойствами. В химической литературе величинаη(N) = 21 (I(N) − A(N))(2.12)определяется как абсолютная химическая жесткость и используется наряду с величинойэлектроотрицательности, которую можно записать какχ(N) = 12 (I(N) + A(N)) .(2.13)Электроотрицательность является мерой способности притягивать электроны,принимать валентные электроны.

Известно, что в с увеличением размера наночастицы,вплоть до микроскопического, электроотрицательность асипмтотически стремится χ кработе выхода материала или химическому потенциалу с обратным знаком:χ(N) → Wвых = −µ.(2.14)Легко видеть, что химическая жесткость является величиной кулоновской энергиинанообъектаη(N) = 12 (I(N) − A(N)) =e2.2C(2.15)Для атомов химическая жесткость возрастает с увеличением номера группы иуменьшается с увеличением номера периода, в которых они находятся.

Соответственно,собственная эффективная емкость атомов должна уменьшаться с увеличением номерагруппы и увеличиваться с увеличением номера периода. Химически мягкие атомыобладают наибольшей собственной емкостью, и, одновременно, весьма высокойхимической активностью. Чем более делокализованы валентные электроны, тем50больший объем занимает электронное облако, что, в свою очередь, и приводит кувеличению собственной эффективной емкости.Говоря про молекулы, можно отметить, что химически мягкие молекулы, также, как и атомы, имеют делокализованные электроны, следовательно, легко (сменьшим изменением энергии) ими обмениваются и, соответственно, имеют большуюемкость, и, в то же время — большую реакционную способность. Химически жесткиемолекулы напротив, в силу компактности их электронного облака, проявляют меньшуюреакционную способность и имеют меньшую емкость по сравнению с химическимягкими молекулами того же размера.2.3.

Метод определения взаимной емкости молекулярных объектов2.3.1. Основа методаАналогично подходу, использованному для расчета собственной емкости,определим понятие эффективной взаимной емкости двух молекулярных объектов изэнергетических соображений. Возьмем за основу зависимость энергии взаимодействиядвух молекулярных объектов от их зарядов и расстояния между ними. Даннаязависимость заложена в коэффициент β из формулы (2.4), по которой можно рассчитатьвзаимную емкость изолированной системы двух молекул. В этом случае коэффициентыC1 , C2 являются собственными емкостями молекул, которые определены соотношением(2.11).Для определения β из (2.5) при заданных Q1 и Q2 требуется найти энергию Wвзэлектростатического взаимодействия молекул.

В общем случае данная задача являетсячрезвычайно трудоемкой. Поэтому для расчета энергии в системе из двух молекулиспользовалось приближение прямых электростатических взаимодействий.2.3.2. Иерархия взаимодействий двух молекулРассмотрим две взаимодействующие молекулы. Гамильтониан такой системыможет быть представлен в видеĤ = Ĥ1 + Ĥ2 + V̂вз ,(2.16)где Ĥ1 и Ĥ2 – гамильтонианы изолированных молекул, V̂вз – оператор взаимодействия.51СущественноеупрощениерешениеуравненияШредингерадлясистемывзаимодействующих молекул в теории межмолекулярных взаимодействий может бытьдостигнуто за счет использования разделения электронного и ядерного движений иадиабатических потенциалов [102].

Анализ экспериментальных данных (см. например[57, 114]) показывает, что одноэлектроника основана на слабосвязанных системах, т.е.с точки зрения расстояний мы находимся в дальней области межмолекулярных взаимодействий, где обменом электронов можно пренебречь, а межмолекулярные силы имеютхарактер притяжения. Следовательно, можно перейти к рассмотрению упрощенноймодели взаимодействия, а именно, к прямым электростатическим взаимодействиям.Таким образом, в пренебрежении релятивистскими, магнитными, запаздывающимиэлектромагнитными и спиновыми составляющими энергия взаимодействия молекулсводится к кулоновской:V̂вз = V̂кул(2.17)В нашем случае при расстояниях более 1 нм межмолекулярные взаимодействиямалы (как пренебрежимо мала и обменная энергия) и справедлива стандартнаятеория возмущений Рэлея–Шредингера.

В первом порядке теории возмущенийможно рассчитать энергию прямого электростатического взаимодействия системмолекулярных зарядов. Последующие порядки описывают энергию поляризациикак следствия поляризации одной молекулой электронного облака другой. Всоответствии с теорией межмолекулярных взаимодействий [115] в дальней зонепреобладают электростатические мультиполь-мультипольные взаимодействия. Поэтомудля расчета энергии взаимодействия можем ограничиться первым приближением теориивозмущений.2.3.3. Учет прямых электростатических взаимодействий в системе из двух молекулОператор взаимодействия двух молекул в кулоновском приближении в атомнойсистеме единиц Хартри (e = me = h̄ = 1) имеет вид:V̂кул = −nA ∑︁NBnB ∑︁NANA ∑︁NBnA ∑︁nB∑︁Za ∑︁Zb ∑︁1 ∑︁Za Zb−++,rrrRajbiijaba=1 j=1i=1 j=1a=1 b=1b=1 i=1(2.18)где индексы a, b соответствуют ядрам, индексы i, j -– электронам молекул A и B, nA (nB )– число электронов в молекуле A (B), NA (NB ) – число ядер в молекуле A (B).52На расстояниях R > 1 нм система является слабосвязанной и оператор V̂кул можнорассматривать как малое возмущение.

Отношение обменной и электростатической(1)(1)энергии Eобм/Eэлэкспоненциально уменьшается с расстоянием [116]. Например, длядимера этилена (C2 H4 )2 на расстоянии между центрами масс молекул 16a0 (a0 –боровский радиус, a0 = 0.53 Å = 0.053 нм.) составляет порядка 0.005. Припренебрежении обменным взаимодействием волновые функции нулевого приближенияявляются произведениями волновых функций изолированных молекул:(0) A BH0 ψnA ψmB = (EnA + EmB )ψnA ψmB = Enmψn ψm ,(2.19)n, m – совокупности квантовых чисел, характеризующих состояния изолированныхмолекул.Энергия прямого электростатического взаимодействия в первом приближениитеории возмущений равна среднему значению оператора возмущения в основномсостоянии (нулевом приближении):(1)Eэл= ⟨ψnA ψmB |V̂кул |ψnA ψmB ⟩.(2.20)Энергия взаимодействия выражается через распределение электронной плотности ρ вмолекулах A и B:Aρnn(i) = NA´|ψnA (1 .

. . i . . . NA )|2 dVi ,´Bρmm( j) = NB |ψmB (1 . . . j . . . NB )|2 dV j ,(2.21)где dVi – элемент объема конфигурационного пространства всех электронов молекулыA, кроме i-го. Интегрирование в (2.21) содержит суммирование по всем спиновымпеременным.Из соотношений (2.19) и (2.20) с учетом электронной плотности (2.21) получимвыражение для энергии взаимодействия Wвз (входящей в формулу (2.5)) двух системзарядов ядер и пространственно распределенных зарядов электронов:∑︁ ˆ∑︁ ˆ11(1)BAWвз = Eэл = −Za ρmm ( j) dV j −Zb ρnn(i) dVi +ra jrbiabˆˆ∑︁ Za Zb1AB+ρnn(i)ρmm( j) dVi dV j +.ri jRaba,b(2.22)Первые два члена – энергия притяжения ядер одной молекулы электронным облакомдругой.

Третий и четвертый члены – энергия отталкивания электронных облаков изарядов ядер соответственно. Таким образом, формула (2.5) принимает вид:β=Q1 Q2(1)Eэл53.(2.23)(1)Численные значения Eэлмогут быть рассчитаны стандартными квантово-химическимиметодами (например, см. [117]).2.4. Емкость пары одинаковых молекул2.4.1. Порядок расчетаНа основе изложенной выше методики проведен расчет взаимной емкости дляодинаковых молекул карборана C2 B10 H12 , фуллерена C60 , а также молекулярногокластера Pt5 (CO)6 (PPh3 )4 [1], металлический центральный остов которого образованпятью атомами платины. Алгоритм расчета следующий.

На первом этапе для наборазначений полного электрического заряда каждой молекулы Q = −2, −1, 0, 1, 2 (в атомнойсистеме единиц) осуществлялся квантово-химический расчет геометрической структурымолекулы, соответствующей стабильному, основному, состоянию молекулы для каждоготакого заряда. Выбор именно таких зарядов обусловлен тем, что состояния малыхмолекул (число атомов < 102 ) с дополнительными электронами более двух являютсянеустойчивыми. Для сильно ионизированных молекулярных ионов (Q > 2) сходимостьрядов существенно ухудшается.

Часто ее невозможно добиться без изменения наборабазисных орбиталей. В нашем случае мы не рассматривали такие ионы, и поэтомудля вычисления зависимости (2.23) было достаточно одного фиксированного базисаволновых функций.В данной работе квантово-химические расчеты по оптимизации геометриимолекул для каждого отдельного ее заряда Q и расчеты их физических параметровпроведены при помощи программного пакета Firefly QC [117] методом Хартри–Фокав базисе гауссовских волновых функций 6 − 311G + +. В результате получены такиепараметры, как полная энергия молекулы в зависимости от заряда Q и соответствующаямолекуле при данном Q трехмерная матрица значений электронной плотности.

Характеристики

Список файлов диссертации

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее